PREPAR3D GUIDE LEONARDO SOFTHOUSE BY CHUCK LAST UPDATED: 6/12/2018 MCDONNELL DOUGLAS MD-82 "MADDOG"

TABLE OF CONTENTS

- PART 1 INTRODUCTION
- PART 2 COCKPIT LAYOUT
- PART 3 FLIGHT PLAN & PRE-START
- PART 4 START-UP PROCEDURE
- PART 5 TAXI
- PART 6 TAKEOFF, CLIMB & CRUISE
- PART 7 AUTOPILOT
- PART 8 APPROACH & LANDING

PLATFORM: PREPAR3D V 4.1

4

The McDonnell Douglas MD-80 "Maddog" is a series of twin-engine, short- to mediumrange, single-aisle commercial jet airliners. It was lengthened and updated from the DC-9. This series can seat from 130 to 172 passengers depending on variant and seating configuration. The MD-80 series was introduced into commercial service on October 10, 1980 by Swissair. The series includes the MD-81, MD-82, MD-83, MD-87, and MD-88. These all have the same fuselage length except the shortened MD-87. The series was followed into service in modified form by the MD-90 in 1995 and the Boeing 717 (originally MD-95) in 1999.

The development of MD-80 series began in the 1970s as a lengthened, growth version of the DC-9-50, with a higher maximum take-off weight and a higher fuel capacity. Availability of newer versions of the Pratt & Whitney JT8D engine with higher bypass ratios drove early studies including designs known as Series 55, Series 50 (refanned Super Stretch), and Series 60. The design effort focused on the Series 55 in August 1977. With the projected entry into service in 1980, the design was marketed as the "DC-9 Series 80".

The MD-82 was intended for operation from 'hot and high' airports but also offered greater payload/range when in use at 'standard' airfields. American Airlines is the world's largest operator of the MD-82, with at one point over 300 MD-82s in the fleet. Originally certified with 20,000 lbf (89 kN) thrust JT8D-217s, a -217A-powered MD-82 was certified in mid-1982 and became available that year. The new version featured a higher MTOW (149,500 lb (67,800 kg)), while the JT8D-217As had a guaranteed take-off thrust at temperature of up to 29 degrees C or 5,000 ft (1,500 m) altitude.

Due to the use of the aging JT8D engines, the MD-80 is not fuel efficient compared to the A320 or newer 737 models; it burns 1,050 US gal (4,000 l) of jet fuel per hour on a typical flight, while the larger Boeing 737-800 burns 850 US gal (3,200 l) per hour (19% reduction). Starting in the 2000s, many airlines began to retire the type. Alaska Airlines' tipping point in using the 737-800 was the \$4 per gallon price of jet fuel the airline was paying by the summer of 2008; the airline stated that a typical Los Angeles-Seattle flight would cost \$2,000 less, using a Boeing 737-800, than the same flight using a MD-80. That being said, the Maddog is truly a pilot's aircraft: with a relatively quiet cabin, it has superb acceleration and climb capabilities and can come screaming into an airport and slow down quite rapidly. Of course, a passenger sitting right next to the powerful and noisy JT8D engines may think otherwise.

Leonardo SoftHouse simulated the MD-82 variant. This simulation goes far beyond what I expected. Pilots were very much involved in the development process and it shows. Plenty of small details bring this old school aircraft back to life in full HD glory. Circuit breakers are functional, failures are simulated, ACARS is simulated, and the aircraft systems are deep and intricate... All sorts of little quirks of the aircraft are scattered here and there and beg to be discovered.

Alitalia MD-82 (Photo by Pavel Koběrský)

The Maddog is either loved or hated. The much maligned MD-80 (or DC-9 Super 80, to be exact) is a good aircraft, but is more difficult to fly since the control surfaces are not operated hydraulically, but are flown with cable actuated trim tabs. As a result, yoke inputs have a delayed reaction, and overcontrolling is likely. The rudder, however, is hydraulically powered. This makes flying an approach in unstable air is much more challenging in the MD than in a Boeing.

However, one has to remember that the MD80's design was a product of its time, and its design made sense within the context of the late 1970's. In 1980, when the first MD-80 was introduced into service, the A320 was still a pipe dream, and Airbus was not quite the major player it is today. The new 737 NG with CFM engines was still in development, so current buyers were still getting Pratt & Whitney powerplants similar to the DC-9/MD-80. The JT8D engines, after all, were fitted on the 737-200 and the 727 as well. The MD series was improved version of the already popular DC-9 platform (by Douglas Aircraft Company), which proved such a dependable workhorse for many airlines around the world.

It was a no-brainer for the airlines that owned DC-9's to move to the more advanced MD80. It was advanced, highly capable, and extremely sturdy and reliable. It was designed to be much more economical than the Boeing 727 it was meant to replace. McDonnell Douglas had a stellar reputation at that time; the three biggest US commercial aviation companies were Boeing, McDonnell Douglas and Lockheed Martin. However, the landscape of the aerospace industry changed with the rise of Airbus in the 1980's and the development of newer, more efficient engines like the GE CFM-56 and the IAE (Rolls-Royce / Pratt & Whitney) V2500, which McDonnell Douglas incorporated too late in their MD-90. The mighty "McDac" was eventually merged with Boeing and Lockheed Martin abandoned commercial aviation altogether with the failure of both the MD-11 and the L-1011 TriStar.

Pratt & Whitney JT8D Engine

McDonnell Douglas DC-9

DC-9 Super 80

TUTORIAL STRUCTURE

Before you even step foot in your virtual cockpit, you need to know where you are, where you are going, how you will get there, what you need to get there. This document is structured like a short tutorial flight.

The flight tutorial is structured as follows:

- Familiarize yourself with the cockpit layout
- Plan your flight
 - Determine the flight route, fuel & cargo loads
 - Spawn the aircraft and set it in a Cold & Dark state
 - Provide aircraft with power
 - Program the AFMC (Advanced Flight Management Computer)
- Start–up the aircraft and make it ready for flight
- Тахі
- Takeoff
- Climb and cruise
- Explore autopilot capabilities
- Descend, approach and land

BEST RESOURCES

DISCLAIMER: Do not use this guide for real life flying. I mean it.

Leonardo Softhouse Downloads Section http://www.flythemaddogx.com/en/media.html

Continental Airlines MD-80 Flight Manual <u>http://www.anythingaboutaviation.com/wp-content/uploads/2013/01/MD80-Flight-Manual-Continental-Airlines.pdf</u>

McDonnell Douglas MD-80 CBT (Computer Based Training) <u>https://www.youtube.com/playlist?list=PLpNS2WzxM5y21lzChvpMWvl7WeUnb1Syk</u>

Froogle Sims MD-82 Fully Loaded (Three Parts) (Youtube) Part 1: <u>https://www.youtube.com/watch?v=WPqCJeb3UYE</u> Part 2: <u>https://www.youtube.com/watch?v=NHGDNjIjTrk</u> Part 3: <u>https://www.youtube.com/watch?v=v7V3SarAVI0</u>

Kent Wien: Cockpit Chronicles: Why I've fallen for the MD-80 (Youtube) <u>https://youtu.be/7R0CViDUBFs</u>

Hilmerby MD-80 Cockpit http://www.hilmerby.com/md80/md_cockpit.html

 \checkmark **MD-82** 0

Oxygen Mask

CAWS (Central Aural Warning System) Speaker

Sun Shade Panel

Briefcase Light **Brightness Control**

-

64.1 N

(6660 - Gil)

TUOY

۷

COCKPIT

N

ART

Δ

Oxygen Flow Indicator

Regulated Oxygen Pressure Indicator

> Oxygen Supply Toggle Switch ON / OFF

Oxygen Diluter Demand Control Switch 100 % Oxygen / Normal Oxygen

Oxygen Control Switch EMERGENCY / NORMAL / TEST MASK

ADF (Automatic Direction Finder) Receive Switches Selects ADF receiver audio signal. Microphone Transmit Button Selects what audio system the microphone will transmit on. Illuminates when selected/pushed.

PARM

BRAKE

Audio Control Panel Audio Systems:

- VHF-1 / VHF-2 / VHF-3
- HF-1/HF-2
- INT (Intercom)
- PA (Passenger Address)

Audio Receive Button

Selects which audio signal is received through your headphones

Voice Only Button Filters out noise and audio signals that are not voice

Academic License

Navigation Display (ND) Range Selector (nm)

0

EFIS ADF Selector

Inner Knob (OFF/ADF): Displays ADF 2 Outer Knob (OFF/ADF): Displays ADF 1

Navigation Display (ND) Mode Selector ROSE /ARC /MAP / PLN

EFIS Data Display Buttons

BIN

- N-AID: displays Navigation Aids
- ARPT: displays airports in AFMC data base
- DATA: displays altitude constraint and estimated time of arrival for each active route waypoint
 NUT: displays upper sists in ASMC data base

OFF

• WPT: displays waypoints in AFMC data base

EFIS (Electronic Flight Instrument System) Control Panel

Nose Gear Steering Wheel Used to steer aircraft on the ground **Parking Brake** Pulled Up = Engaged

,160

RANGE

320

E

40

20.

10

ADF

DATA

ARPT

MA

MODE

PLN

Left Panel Light Control Switch

Center Instruments & Pedestal

Lights Digital Control Switch

Flap Deployment Speed Limits Placard

Academic License

Floor Lights Switch BRIGHT / DIM / OFF

Static Air Pressure Source Selector NORM: Normal ALT: Alternate

Left Floor Lights Control Switch

STATIC AIR

FLOOD

VORA

CTR INSTR & PED LTS

FLOOR LTS

BRT

DIM

System)

YOUT 4 COCKPIT N ART

Δ

0

Clearview Window Opening Handle

50 35

Academic License

13

639

Electrical Connection to Window Heater

Wing/Engine Nacelle Lights Switch

10.

FUEL QTY

- OFF: All lights OFF
- ON: All lights ON
- R ONLY: Right wing leading edge and right engine nacelle floodlights are on. May be used to light up the right side during loading of cargo if no other lights are available.

Position/Strobe Lights Switch

HLD HLD

OFF: All lights OFF ٠

STICK

POS BOTH

219

- POS: Position Lights only are ON
- BOTH: Position Lights and strobe are ON

ABS

Academic License

LAYOUT COCKPIT N PART

Academic License

ART (Automatic Reserve Thrust) Switch AUTO: ART system enabled OFF: ART system disabled Note: When using T.O. FLX rating on takeoff, ART switch must be OFF.

ART (Automatic Reserve Thrust) READY Light & ART Light READY: illuminates to indicate that ART self-test checks out properly *ART: illuminates to indicate that ART has been activated*

Slats T/O Advisory Indicates flaps/slats are in takeoff range

FUEL QTY

18

59

16

LEFT MAIN and RIGHT MAIN Fuel Tank Quantity Readout (lbs)

CENTER Fuel Tank Quantity Readout (lbs)

Total Fuel Quantity Readout (Ibs)

Aircraft Gross Weight (lbs) Total aircraft weight at any moment during the flight or ground operation

Zero Fuel Weight Knob Sets Zero Fuel Weight

Fuel Readout Test Button Tests Channel A and B

Slats AUTO Advisory Light Indicates slats have automatically been extended from MID to EXTEND position by stall warning system.

Slats LAND Advisory Light Indicates FLAP/SLAT handle is set at 28° or 40° of flap and slats are fully extended.

RAT (Ram Air Temperature) (deg C)

Fuel Temperature (deg C)

MD-82

≻

4

CKPIT

Ο

4

Engine Oil Pressure Indication (psi) 40 Light: Low Pressure Amber Caution 35 Light: Low Pressure Red Warning

Engine Oil Temperature Indication (deg C) 135 Light: High Temperature Amber Caution 165 Light: High Temperature Red Warning

Engine Oil Quantity Readout (Quarts)

Hydraulic Systems Pressure (x100 psi)

Hydraulic Fluid Quantity (Quarts)

Flaps Position Indication (deg)

Slats DISAG Amber Light Indicates left and right wing slats position do not agree with each other and/or with handle position

25

Academic License

Landing Gear Door Open Light

AUTO

Thrust Rating Selectors TO: Takeoff Thrust TO FLX: Takeoff FLEX (assumed temperature) Thrust GA: Go-Around Thrust MCT: Maximum Continuous Thrust CL: Climb Thrust CR: Cruise Thrust

EPR

LIM

OVRD

504

MD-82

Landing Gear Wheel Not Turning Light ON when any wheel is turning 20% lower than the average of the remaining main gear wheels

548

98

Thrust Rating Test Button

9

10

Landing Gear Control Lever

AUTO

Landing Gear Handle Release Button

TAS (True Airspeed) Indicator (kts)

QTY

IFL

SAT (Static Air Temperature) Indicator(deg C)

Landing Gear Indicator Lights GREEN: Down and Locked RED: Landing gear in transition/unlocked OFF: Up and Locked

> Takeoff FLEX Assumed Temperature Setting Used to set FLEX Takeoff Temperature

> > 04

Note: **FLEX** is the standard takeoff thrust setting used on the MD-82. FLEX means that the aircraft uses reduced thrust on takeoff in order to reduce noise, prevent engine wear and prolong engine life. "Flexible temperature" means that the engine controller will force the engine to behave as if outside air temperature was higher than it really is, causing the engines to generate less thrust since higher air temperatures diminish an aero-engine's thrust generating capabilities. FLEX is also known in other companies as "Assumed Temperature Derate", "Assumed Temperature Thrust Reduction" or "Reduced Takeoff Thrust" or "Factored Takeoff Thrust".

FD CADC (Flight Director Central Air Data Computer) Light

HIG

ΡΑRT 2 – СОСКРІТ LAYOU1

22%

04

Left/Right Engine Main Hydraulic Pump Switches

120

HI: 3000 psi hydraulic pressure output

-250

LOW: 1500 psi hydraulic pressure output

S OFF: No pressure output. Hydraulic fluid will circulate for pump lubrication and cooling.

Auxiliary Hydraulic Pump Switch

- ON: 3000 psi hydraulic pressure output
- OFF: No pressure output. Hydraulic fluid will circulate for pump lubrication and cooling.

253 65

• OVRD: Auxiliary pump turned on at 3000 psi while OVERRIDE switch is held to bypass the overheat protection system.

Wheel Brake Temperature (x100 deg C)

Wheel Brake Temperature Overheat Light Illuminates when over 305 deg C Extinguishes when below 260 deg C

Wheel Brake Temperature Selector Selects individual brake for temperature reading. When at ALL, gauge

Selects individual brake for temperature reading. When at ALL, ga will display temperature of the hottest brake.

LEFT Hydraulic System

The left hydraulic system supply pressure for the operation of the following systems:

- left engine thrust reverser
- inboard flight spoilers
- elevator augmentor power
- slat drive mechanism
- outboard flaps actuators (both wings)
- left and right wheel brakes
- left nose wheel steering actuator
- transfer hydraulic pump

21

• ground spoiler (both panels)

RIGHT Hydraulic System

The right hydraulic system supply pressure for the operation of the following systems:

- right engine thrust reverser
- rudder power

TA

- outboard flight spoilers
- rudder throw limiter
- slat drive mechanism
 - rear stair
- inboard flaps actuator (both wings)
- left and right wheel brakes
- right nose wheel steering actuator
- transfer hydraulic pump
- ground spoiler (both panels)

Wheel Brake Temperature Test Switch Test brake electrical circuits and OVHT light. Gage will indicate in 425°C to 475°C range during test. FLO

NORM .

AFMC (Advanced Flight Management Computer) MCDU (Multifunction Control Display Unit)

- A FMS (Flight Management System) is a specialized computer system that automates a wide variety of in-flight tasks, reducing the workload on the flight crew to the point that modern civilian aircraft no longer carry flight engineers or navigators. A primary function is in-flight management of the flight plan.
- The FMS is controlled through the **MCDU** physical interface.

EXEC 1

0

DE

N

CLR

PROG

0

MCDU MENU

RTE

MENU

SELECT DESIRED SYSTEM

LEGS

6

G

CAFMC #1 (ACT)

RHC

< ACARS

The FMS sends the flight plan for display to the Electronic Flight Instrument System (EFIS), Navigation Display (ND), or Multifunction Display (MFD).

MD-82

PEED

Academic License

HYO PUMP

3

1805

108

POS INITS

Control

CRI

HOLD

EXEC

RED SYSTEM

CLB

FIX И

Throttles

100

CODD.

5

143

· + 0.00 POS INTO

Ground Spoiler/Speed Brake Lever

TIFEI

0

210

S

1000 11

ERE

0

0

SPEED BRAKE

Auto-throttle disconnect button

TOGA (Takeoff/Go Around) Button Used to set TOGA auto-throttle thrust rating

ALT RIN

HOSE

10

80.

Academic License

42944

31

VALVE

CABIN

DEN

FUEL

Longitudinal Trim Handle

Takeoff Condition Longitudinal Trim Readout Calculated from CG Setting and Takeoff Flap Setting

CG (Center of Gravity) Indicator (%)

CG (Center of Gravity) Setting Thumbwheel

Longitudinal Trim Indicator

Longitudinal Trim Takeoff Position Reference

NOSE

Long Trim Indicator must be within this reference zone in order to be properly trimmed for takeoff

Takeoff Flap Setting Readout (deg)

cUE

Takeoff Flap Setting Thumbwheel

12

NOP

143

FUEL

Academic License

AC

SPEED BRAKE

Fuel Control Levers

Landing Gear Horn OFF Button

10

510

3

Cabin Altitude Control Wheel

Cabin Altitude Control Lever Manual/Auto

5

n

100

ALT LONG (Alternate Electrical Longitudinal Stabilizer) Trim Lever

E

ALC)

13.20

VALVOS.

FUEL

aff

HOSE

CUEL

NOSE

MD-82

Stabilizer Trim STOP Switch Emergency switch, used to prevent stabilizer movements by the primary trim motor.

Rudder Trim Control Wheel

Rudder Trim Indicator

OFF

Left/Right Pneumatic Cross-Feed Valve **Control Levers**

- UP: Open (allows pneumatic pressure supply • to air condition and pressurization systems from left/right engine)
- DOWN: Closed

Aileron Trim Indicator

Auto-Brake Arm/Disarm Switch

3

SELCAL

OFF

PRESS TO RESETITEST

CTR INSTR & PED LTS

OFE

Auto-Brake Mode Selector Switch

BRAKE

- TO: (Rejected) Takeoff Braking. Provides maximum braking pressure from both left and right hydraulic systems
- OFF: ABS inoperative. Manual braking available. •
- LAND MIN: Brake application is delayed with approximately 3 seconds. Deceleration level is 4.0 ft/s
- LAND MED: Brake application is delayed with approximately 3 seconds. Deceleration level is 6.5 ft/s.
- LAND MAX: Brake application is delayed with approximately 1 second. Brakes are applied with maximum force.

PART 2 – COCKPIT LAYOUT

0 0 Q - 7 GEAN GOFF GFFF FUEL VALV LONG NOSE OFF DECR 1 VALVE NOSE T 1200 ----128.300 😁 12 0 ø EA PED LTS 72.0 C 01 65 **Emergency Landing Gear Lever** DISARM TABLIZER TRIN PNEU X-FEED VALVE OPEN AUTO B K

Academic License

MD-82 GROUND SERVICE FLEC PWR Fire Detection **Ground Service** Loop Panel ectrical Power Panel CARGO DETECTION SURPRESSION 99999 - AMALD -Audio Selector Panel D •
 Constraint
 Antifettion
 A CAPTANT'S CAPTAIN'S CAPTAIN'S THIS ACTINGTON NAV-1 MACCH UPS 00 00 0 0 0 0 (8) 6 B PRESS APU APU APU APU APU APU APU APU VHF 44.00L BALENCE AREAD.TH AREAD.TH AREAD.TH BEST AT UTTERT'S COMPANS CLICON CLICON 63 LAYOUT 🐵 🕞 💿 💿 💿 🕼 Circuit Breaker Panel 0 6 C CMPTE ANN-- UPARTER DESCRIPTION DESC 6 (a) (a) (a) (a) (a) (a) (a) (a) 0 Θ 0 0 (0) 15 16 17 18 19 20 21 BAT DIR BUS BATTERY BUS 9 10 11 14 8 COCKPIT EMERGENCY DC BUS 6 **Cockpit Voice** EFIS ronic **IRS (Inertial Reference** Recorder Flight Inst tem) Mode Pa ume System) Pane ERASE Synchronization 0 N PART 000000

Air Conditioning Outlet

CARDO LUUP PI

INTEREST

Panel

Can an San

Academic License

 \mathbb{Z}

~

MD-82

EOAP (Electronic Overhead Annunciator Panel)

B

3

ICE FAULTS

NO

WAAS (Warning & Advisory Annunciations) Panel

115.10

42

Academic License

EOAP (Electronic Overhead Annunciator Panel)

I
2
ò
ò
Σ

	ELEC		
1	EOAP Sub-Page Select ELECTRICAL / ICE / ENGI	ct N	ors ES / FLIGHT CONTROLS
	ELEC AC CROSSTIE LOCKOUT APU GEN OFF L AC BUS OFF R AC BUS OFF L GEN OFF R GEN OFF L CSD OIL PRESS LOW	and the second s	ICE PITOT/STALL HEAT OFF L ENG VALVE R ENG VALVE AIRFL ICE PRESS ABNML L ICE PROT TEMP LOW R ICE PROT TEMP LOW L ICE PROT TEMP HIGH
	R CSD OIL PRESS LOW		R ICE PROT TEMP HIGH

NO ELEC FAULTS

	_	
ICE	l	ENGINE
PITOT/STALL HEAT OFF		ENGINE SYNC ON
L ENG VALVE		ART INOP
R ENG VALVE		L START VALVE OPEN
AIRFL ICE PRESS ABNML		R START VALVE OPEN
L ICE PROT TEMP LOW		L OIL PRESSURE LOW
R ICE PROT TEMP LOW		R OIL PRESSURE LOW
L ICE PROT TEMP HIGH		L INLET FUEL PRESS LC
R ICE PROT TEMP HIGH		R INLET FUEL PRESS LO
L ICE FOD ALERT		FUEL LEVEL LOW
R ICE FOD ALERT		CENTER FUEL PRESS LO
L ICE FOD SYS INOP		FIRE DETECTOR LOOP
R ICE FOD SYS INOP		L OIL STRAINER CLOG
		R OIL STRAINER CLOG

INGINE NGINE SYNC ON RT INOP START VALVE OPEN START VALVE OPEN **OIL PRESSURE LOW** OIL PRESSURE LOW **INLET FUEL PRESS LO** INLET FUEL PRESS LO UEL LEVEL LOW ENTER FUEL PRESS LO IRE DETECTOR LOOP

DOORS

EOAP Sub-Page Selectors

MISCELLANEOUS / HYDRAULICS / MONITORING /

CTRL
EYAW DAMP OFF
MACH TRIM INOP
SPOILER/FLAP EXTEND
SLAT DISAGREEMENT
SPEED BRAKE EXT
SPOILER DEPLOYED

	MISC
	STALL IND FAILURE
	APU OIL PRESSURE LOW
	FLT RECORDER OFF
	GPWS FAIL
	AHRS 3 INOP
	TRANSPONDER INOP
	WINDSHEAR INOP

20

HYD

EOAP Scroll UP/DOWN Buttons

PARKING BRAKES ON RUDDER CTRL MANUAL L REVERSE ACC LOW **R REVERSE ACC LOW** L HYD PRESS LOW **R HYD PRESS LOW** LOUTBD ANTI-SKID L INBD ANTI-SKID R OUTBD ANTI-SKID R INBD ANTI-SKID L HYD TEMP HIGH **R HYD TEMP HIGH**

MON OAP SINGLE SCREEN OP

DOOR

RUDDER TRAVEL

to and

FWD CABIN DOOR AFT CABIN DOOR FWD STAIRWAY DOOR AFT STAIRWAY DOOR FWD GALLEY DOOR AFT GALLEY DOOR FWD CARGO DOOR MID CARGO DOOR AFT CARGO DOOR EXT PWR ACCESS DOOR

0

DC BUS OFF

DC TRANSFER BUS OFF

EMER LIGHT NOT ARMED

BATTERY CHARGER

PART 2 – COCKPIT LAYOUT

MD-82

CKPIT Ŏ N

A constant speed drive (CSD) is a mechanical gearbox that takes an input shaft rotating at a wide range of speeds, delivering this power to an output shaft that rotates at a constant speed, despite the varying input. They are used to drive mechanisms like electrical generators that require a constant input speed. CSDs are mainly used to drive the alternating current (AC) electrical generator. In order to produce the proper voltage at a constant AC frequency, usually three-phase 115 VAC at 400 Hz, a generator needs to spin at a constant specific speed (typically 6,000 RPM for air-cooled generators). Since the jet engine gearbox speed varies from idle to full power, this creates the need for a constant speed drive (CSD). The CSD takes the variable speed output of the accessory drive gearbox and hydro-mechanically produces a constant output RPM.

Δ

\downarrow			MARKER	-			INO	P					FLT RCER	e				Academic	: License
MD-82)=			PT O		VOR ILS DME ADF		VOICE	.0			M.	ECH	GND TEST	,					
	Circuit Break Rows A, B &	A ers C	CAPTAIN'S ISI & HEADING 28 VAC		CAPTAIN'S ALTIMETER 28 VAC	VHF NAV-1 28 VAC	CAPTAIN'S MACH AIRSPEED IND 28VAC	FMS GPS	CAPTAIN'S YS/TCAS IND	PASSENGER ADDRESS	MODE-S ATS CONTROL PANEL	INTERPHON -1		EMERGENC POWER IN USE LIGHT	Y CABIN STANDBY LIGHTS	EMERGENI STANDBY LIGHTS	CY EMERGENCY LIGHTS ARM AND CHARGE	Y CAPT & F/ WHITE FLOOD LIGHTS	° con
LAYOUT		В	PRESSURE	FIRST OFFICERS RMI 28 VAC	CAPTAIN'S NAV DISPLAY	CAPTAIN'S PED	AHRS-1	FIRST OFFICER'S COMPASS	MODE-5 ATC-1	COMM-1	VHF NAV-1	GLIDE SLOPE-1	DC BUS CROSS THE CONTROL	EMERGENCY DC BUS SENSING		CNDITION GULAR ALVE RIGHT	EGT.N1.2 DISPLAY LEFT	GROUND	ELECTR
- COCKPIT		(AIR DATA CMPTR -1	AHRS-:	R SYMBOL GENERATO -1POWER	R MERGENC NAV INSTR XFMR	Y MAI TEMPE CON COCKPIT	NUAL RATURE ITROL CABIN	EMERGENCY AC BUS SENSING	EPR LEFT	ADF-1 28 VOC	SWITCHING UNIT	AHRS SWITCHING UNIT	CAPTAIN'S PITOT HEATER	AIR CNI FLOW CO VAL LEFT	DITION INTROL VE RIGHT	EPR,FF DISPLAY RIGHT	CHARGER RANSFER RELAY	BATTER
PART 2 -	Emergeno	y AC Bu	L as Circuit B	2 reakers	3 E	4 Emergen	5 cy ac bi	6 us	7	8	<u>ل</u> ع	10	11 — емеко	12 Gency do	13 : вия —	14	15 1 54	1 6 1 — ват d	7 Dir B

MD-82

PART 2 – COCKPIT LAYOUT

~

MD-82

ľ

PAR

COCKPIT N ART

~

Aft Stairway & Aft Cabin Door Stairway needs auxiliary hydraulic pumps ON to fully deploy

-

MD-82

LAYOUT

COCKPIT

N

PART

Anti-Collision Light (Red) Located under the fuselage

During normal operation, the APU ram air door opens automatically at the beginning of the start cycle. The ram air door will close and the non-ram air doors open when APU RPM reaches 95%.

APU Non-Ram Air Door APU Ram Air Door

APU Non-Ram Air AFT and FORWARD Doors

200, XXXXXXXX, XXXX, XXXX, XXX

LAYOUT COCKPIT N PART

Aft Compartment Cooling Exhaust

Cabin Outflow Valve Exhaust

APU (Auxiliary Power Unit) Exhaust

Ram Air Inlet

PART 2 - COCKPIT LAYOUT

MD-82

V

ľ

Props to Leonardo Softhouse for having designed such detailed Pratt & Whitney JT8D engines!

Inlet Guide Vane (Static)

In real life, you cannot just fly a MD-82 wherever and whenever you please. Just like on land, the sky is littered with an intricate network of waypoints and aerial highways. Therefore, it is necessary to plan your flight route and to determine how much fuel you will need to carry in order to reach your destination.

In order to do this, we will use a tool called "Online Flight Planner" available here: <u>http://onlineflightplanner.org/</u>

There are a number of fuel planners available online. These estimates may or may not be very accurate. There are specific charts created by McDonnell Douglas to come up with accurate fuel estimates which are unfortunately not available to the public. Therefore, for the sake of simplicity we will just use a rule of thumb that's good enough for the purpose of this tutorial.

Airways: KSAN SID IPL J18 HOGGZ STAR KPHX

Provided by **>**

METAR:

Departure: KSAN 060151Z 35005KT 10SM BKN250 19/M07 A3006 RMK AO2 SLP180 T01891072 Destination: KPHX 060151Z 29009KT 10SM BKN250 21/M16 A3001 RMK AO2 SLP154 T02061161

Provided by NIATION WEATHER CENTER

Fuel quantity for McDonnell-Douglas MD80 Fuel Time Fuel Usage 6415 lbs 01:01 Reserve Fuel 7831 lbs 01:15 Fuel on Board 14246 lbs 02:16

Provided by Fuelplanner.com

Today's flight will start from SAN DIEGO INTERNATIONAL AIRPORT, CALIFORNIA (KSAN) and our destination will be PHOENIX SKY HARBOR INTERNATIONAL AIRPORT (KPHX).

Using the "Online Flight Planner" available here: http://onlineflightplanner.org/ we will enter the Departure airport (KSAN), the Destination airport (KPHX) and the AIRAC Cycle desired (we will use the AIRAC cycle 1709 as explained on the next page).

Click on CREATE PLAN to generate a flight plan.

Note: The latest AIRAC version in Service Pack 1 has been updated to 1801. This tutorial will still use 1709 since this is what was released initially.

MD-82

In aviation, an **Aeronautical Information Publication** (or **AIP**) is defined by the International Civil Aviation Organization as a publication issued by or with the authority of a state and containing aeronautical information of a lasting character essential to air navigation. It is designed to be a manual containing thorough details of regulations, procedures and other information pertinent to flying aircraft in the particular country to which it relates. It is usually issued by or on behalf of the respective civil aviation administration. AIPs are kept up-to-date by regular revision on a fixed cycle. For operationally significant changes in information, the cycle known as the **AIRAC (Aeronautical Information Regulation And Control)** cycle is used: revisions are produced every 56 days (double AIRAC cycle) or every 28 days (single AIRAC cycle). These changes are received well in advance so that users of the aeronautical data can update their flight management systems (FMS). (Source: https://en.wikipedia.org/wiki/Aeronautical Information Publication)

In other words, some Youtube tutorials might show you flight routes with certain waypoints that got changed with more recent AIRAC updates. Some waypoints or even airports may not exist anymore. Therefore, you have two options:

- 1. Plan your flight using the default AIRAC cycle programmed in the AFMC when it was first coded by Leonardo Softhouse during late August, 2017 (period <u>09</u>) 20<u>17</u> (AIRAC cycle <u>1709</u>), which is what we will do for this tutorial. This option is free and simple if you fly alone. However, if you fly with online ATCs in multiplayer that use the latest AIRAC database, you should go for the second option.
- 2. Plan your flight using the latest AIRAC cycle. You will need to update your AIRAC, SID and STAR database by using a paid subscription service called "Navigraph", which is available here https://www.navigraph.com/FmsDataManualInstall.aspx.

AIRAC effective dates (28-day cycle) [edit]

The current AIRAC cycle is 1605 (effective 28 Apr 2016).

#	2003	2004*	2005	2006	2007	2008*	2009	2010	2011	2012*	2013	2014	2015	2016*	2017	2018	2019	2020*		IDEN	T		1	21	
01	23 Jan	22 Jan	20 Jan	19 Jan	18 Jan	17 Jan	15 Jan	14 Jan	13 Jan	12 Jan	10 Jan	9 Jan	8 Jan	7 Jan	5 Jan	4 Jan	3 Jan	2 Jan	MD-82			JT	ENGI 8D-2	NES 17A	
02	20 Feb	19 Feb	17 Feb	16 Feb	15 Feb	14 Feb	12 Feb	11 Feb	10 Feb	9 Feb	7 Feb	6 Feb	5 Feb	4 Feb	2 Feb	1 Feb	31 Jan	30 Jan	AIRAC	1709	AUC	G17S	EP13	I V E 3/17	
03	20 Mar	18 Mar	17 Mar	16 Mar	15 Mar	13 Mar	12 Mar	11 Mar	10 Mar	8 Mar	7 Mar	6 Mar	5 Mar	3 Mar	2 Mar	1 Mar	28 Feb	27 Feb	OP PR	OGRA					
04	17 Apr	15 Apr	14 Apr	13 Apr	12 Apr	10 Apr	9 Apr	8 Apr	7 Apr	05 Apr	4 Apr	3 Apr	2 Apr	31 Mar	30 Mar	29 Mar	28 Mar	26 Mar	JEP-17 DRAG	09 F a c t	0 R		FAC	TOR	
05	15 May	13 May	12 May	11 May	10 May	8 May	7 May	6 May	5 May	03 May	2 May	1 May	30 Apr	28 Apr	27 Apr	26 Apr	25 Apr	23 Apr	+Ø.1				+	0.1	
0 6	12 Jun	10 Jun	9 Jun	8 Jun	7 Jun	5 Jun	4 Jun	3 Jun	2 Jun	31 May	30 May	29 May	28 May	26 May	25 May	24 May	23 May	21 May	< INDEX			PU	SIN	4IT>	
07	10 Jul	8 Jul	7 Jul	6 Jul	5 Jul	3 Jul	2 Jul	1 Jul	30 Jun	28 Jun	27 Jun	26 Jun	25 Jun	23 Jun	22 Jun	21 Jun	20 Jun	18 Jun	DIR RTE	LEGS	CLB	CRZ	DES		
0 8	7 Aug	05 Aug	4 Aug	3 Aug	2 Aug	31 Jul	30 Jul	29 Jul	28 Jul	26 Jul	25 Jul	24 Jul	23 Jul	21 Jul	20 Jul	19 Jul	18 Jul	16 Jul	NEXT PAGE MENU	FIX	DEP	HOLD	PROG	EXEC	6
09	4 Sep	02 Sep	1 Sep	31 Aug	30 Aug	28 Aug	27 Aug	26 Aug	25 Aug	23 Aug	22 Aug	21 Aug	20 Aug	18 Aug	17 Aug	16 Aug	15 Aug	13 Aug	00	A	B	С	D	E	F
10	2 Oct	30 Sep	29 Sep	28 Sep	27 Sep	25 Sep	24 Sep	23 Sep	22 Sep	20 Sep	19 Sep	18 Sep	17 Sep	15 Sep	14 Sep	13 Sep	12 Sep	10 Sep	2 3			Ä			-
11	30 Oct	28 Oct	27 Oct	26 Oct	25 Oct	23 Oct	22 Oct	21 Oct	20 Oct	18 Oct	17 Oct	16 Oct	15 Oct	13 Oct	12 Oct	11 Oct	10 Oct	8 Oct	5 6	G					F
12	27 Nov	25 Nov	24 Nov	23 Nov	22 Nov	20 Nov	19 Nov	18 Nov	17 Nov	15 Nov	14 Nov	13 Nov	12 Nov	10 Nov	9 Nov	8 Nov	7 Nov	5 Nov	00	M	N	0	<u>P</u>	Q	R
13	25 Dec	23 Dec	22 Dec	21 Dec	20 Dec	18 Dec	17 Dec	16 Dec	15 Dec	13 Dec	12 Dec	11 Dec	10 Dec	8 Dec	7 Dec	6 Dec	5 Dec	3 Dec	O'C	S	I	U	V	W	X
14																		31 Dec	0 7/-	Y	Z		DEL	1	CI

Note: * = leap year containing 29 Feb (2004, 2008, 2012, 2016, etc.)

PLANNING THE FLIGHT

Note: The latest AIRAC version in Service Pack 1 has been updated to 1801. This tutorial will still use 1709 since this is what was released initially.

-	U	E	L	Ρ	L	<u>A</u>	N	Ν	N	J	(

MD-82

ART

F

PRE.

Š

/

1 ٦

Т ט

LL

m

٢

→ • ↑ 📙	> PC	Charles → Local Disk (C:) → Users :	Charles-PC > Documents > M	laddog X Files → Load	Manager
		Name	Date modified	Type	Size
Quick access		🗟 fms. navdata dll	2017-07-27 7·20 AM	Application extens	721
Desktop	*	S maddog Im	2018-03-01 8:55 AM	Application	11.055
👆 Downloads	*	0 W			

For a flight of approx. 270 nm, fuel planning can be estimated by using http://onlineflightplanner.org/ or Leonardo's custom fuel calculator available in C:\Users\[YourUsername]\Documents\Maddog X Files\Load Manager

will use simplified this tutorial, method explained the Hilmerbv website In we а on http://www.hilmerby.com/fom/proc fuel.html . We will use the distance estimated by flightplanner.org, then use this distance in the TOTAL FLIGHT TIME AND TRIP FUEL table to estimate flight time, and then we will use a ballpark figure for fuel consumption to estimate the total fuel required for the flight. Simple enough, eh?

Distance obtained from Onlinelightplanner.org = 270 nm

Direct flight time estimated by Table 1 for 300 nm distance and cruise altitude of 33,000 ft = Approx. 1 hour Total Time Estimate = Flight Time Estimate + Time to Alternate Airport = 1 hour + 30 min = 1 hour 30 minutes.

Imperial Units

Fuel for Flight = Total Time Estimate x 6600 lbs/hour = 1.5 hours x 6600 lbs/hour = 9900 lbs Reserve Fuel = 4400 lbs (estimate includes contingency fuel (5 % total trip fuel) and final reserve fuel) Total Fuel = Fuel for Flight + Reserve Fuel = 16400 lbs

Write this fuel weight down!

Metric Units

Fuel for Flight = Total Time Estimate x 3000 kg/hour = 1.5 hours x 3000 kg/hour = 4500 kg Reserve Fuel = 2000 kg (estimate includes contingency fuel (5 % total trip fuel) and final reserve fuel) Total Fuel = Fuel for Flight + Reserve Fuel = 6500 kg

ID	Frequency	Track	Distance (nm)	Coo	rdinates	Name/Remarks
KSAN	-	0	0	N32°44'00.80"	W117°11'22.80"	SAN DIEGO INTL
IPL	115.9	84	85	N32°44'55.92"	W115°30'30.89"	IMPERIAL
HEEDS	-	84	25	N32°45'37.18"	W115°00'27.83"	HEEDS
BZA	116.8	84	20	N32°46'05.18"	W114°36'10.60"	BARD
HOGGZ	-	85	27	N32°46'29.50"	W114°04'09.12"	HOGGZ
KPHX	-	64	111	N33°26'03.40"	W112°00'41.70"	PHOENIX SKY HARBOR INTL

San Diego International Airport (KSAN) ⇒ Phoenix Sky Harbor International Airport (KPHX)

A waypoint can be enabled/disabled by clicking on it (except first two and last two waypoints)

6 fixes, 268 nm. Airways: KSAN SID IPL J18 HOGGZ STAR KPHX **Distance estimate from Online Flight Planner**

TABLE 1. TOTAL FLIGHT TIME AND TRIP FUEL.

This table shows the normal trip fuel and is valid for landing weight of 50 000 kg and less. For each 2 000 kg deviation above 50 000 kg landing weight, add corrections in kilos. Time in hours and minutes. Fuel in tons. Ground distance in Nautical miles.

The table is valid for zero wind. 50kt wind will add/decrease time/fuel by approximately 10%.

Ground	27 0	00ft	29 0	00ft	31 0	00ft	33 (00ft	35 0	00ft	37 0	00ft	Com
distance	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	Corr
2800	6:51	20,1	6:42	19,5	6:36	18,9	-	-	-	-	-	-	500
2600	6:24	18,6	6:15	18,1	6:10	17,5	-	-	-	-	-	-	450
2400	5:57	17,1	5:48	16,6	5:43	16,1	-	-	-	-	-	-	450
2200	5:29	15,6	5:21	15,2	5:16	14,7	5:14	14,3	-	-	-	-	400
2000	5:02	14,2	4:54	13,8	4:49	13,4	4:46	13,0	-	-	-	-	360
1900	4:48	13,4	4:40	13,1	4:35	12,7	4:33	12,4	-	-	-	-	360
1800	4:34	12,7	4:26	12,4	4:22	12,0	4:19	11,7	-	-	-	-	350
1700	4:20	12,0	4:13	11,7	4:08	11,4	4:06	11,1	-	-	-	-	300
1600	4:06	11,3	3:59	11,0	3:54	10,7	3:52	10,4	3:45	9,9	-	-	300
1500	3:52	10,6	3:45	10,3	3:41	10,1	3:39	9,8	3:38	9,6	-	-	300
1400	3:38	9,9	3:31	9,7	3:27	9,4	3:25	9,2	3:25	9,0	-	-	250
1300	3:24	9,2	3:17	9,0	3:13	8,8	3:11	8,5	3:11	8,3	-	-	250
1200	3:09	8,5	3:03	8,3	3:00	8,1	2:58	7,9	2:57	7,7	-	-	250
1100	2:55	7,9	2:49	7,7	2:46	7,5	2:44	7,3	2:44	7,1	-	-	200
1000	2:40	7,2	2:35	7,0	2:32	6,9	2:30	6,7	2:30	6,5	-	-	200
900	2:26	6,5	2:21	6,4	2:18	6,2	2:17	6,1	2:16	6,0	-	-	150
800	2:11	5,9	2:07	5,7	2:04	5,6	2:03	5,5	2:03	5,4	-	-	150
700	1:56	5,2	1:53	5,1	1:50	5,0	1:49	4,9	1:49	4,8	-	-	150
600	1:41	4,6	1:39	4,5	1:36	4,4	1:36	4,3	1:35	4,2	1:35	4,2	150
500	1:26	3,9	1:24	3,8	1:22	3,8	1:22	3,7	1:21	3,7	1:22	3,6	100
400	1:11	3,3	1:10	3,2	1:08	3,2	1:08	3,1	1:08	3,1	1:08	3,1	100
300	0:56	2,6	0:55	2,6	0:54	2,6	0:54	2,5	0:54;	2,5	0:54	2,5	100
200	0:41	2,0	0:40	2,0	0:40	2,0	0:40	2,0	-	-	-	-	100

Fuel estimate from **Online Flight Planner**

Fuel quantity for McDonnell-Douglas MD80 Fuel

Fuel Usage	6415 lbs	01:01
Reserve Fuel	7831 lbs	01:15
Fuel on Board	14246 lbs	02:16

Time
PLANNING THE FLIGHT

FLIGHT ROUTE

The flight route we could take from onlineflightplanner.com is: KSAN SID IPL J18 HOGGZ STAR KPHX

Write this route down!

But what does it all mean? Here is a breakdown of this route:

- Depart from San Diego International Airport (KSAN)
- Follow the SID (Standard Instrument Departure) route from KSAN to IPL
- Navigate to IPL VOR
- Follow J18 Airway
- Navigate to HOGGZ VOR
- Follow the STAR (Standard Terminal Arrival Route) from HOGGZ to KPHX
- Land at Phoenix Sky Harbor International Airport (KPHX)

Keep in mind that you can find airport charts on www.skyvector.com

KSAN:

https://skyvector.com/airport/SAN/San-Diego-International-Airport

KPHX:

https://skyvector.com/airport/PHX/Phoenix-Sky-Harbor-International-Airport

San Diego International Airport (KSAN) ⇒ Phoenix Sky Harbor International Airport (KPHX)

ID	Frequency	Track	Distance (nm)	Cool	rdinates	Name/Remarks	
KSAN	-	0	0	N32°44'00.80"	W117°11'22.80"	SAN DIEGO INTL	
IPL	115.9	84	85	N32°44'55.92"	W115°30'30.89"	IMPERIAL	
HEEDS	-	84	25	N32°45'37.18"	W115°00'27.83"	HEEDS	
BZA	116.8	84	20	N32°46'05.18"	W114°36'10.60"	BARD	
HOGGZ	-	85	27	N32°46'29.50"	W114°04'09.12"	HOGGZ	
KPHX	-	64	111	N33°26'03.40"	W112°00'41.70"	PHOENIX SKY HARBOR INTL	

A waypoint can be enabled/disabled by clicking on it (except first two and last two waypoints).

6 fixes, 268 nm.

Airways: KSAN SID IPL J18 HOGGZ STAR KPHX

WHAT IS A **SID** AND A **STAR**?

A **SID** (Standard Instrument Departure) is a small initial route which leads an aircraft from the runway they've just taken off from to the first point in his/her intended route. An airport usually has a lot of aircraft departing from it's runways. To save confusion (and for safety), a busy airport will publish standard routes from it's runways to the various routes away from that airport. This way a controller can be sure that even if a steady stream of aircraft is leaving the airport they will all be following in a nice neat line, one behind the other (that's the idea anyhow!).

Standard routes are the preferred method to fly from airport to airport. This is why we use a flight plan generator. Arriving at an airport is just the same. The **STARs** (STandard Arrival Routes) are also published in chart form and allow you to fly into an airport using standard procedures. This way, less communication is again needed with the controllers as (once you have declared your intention or been given a route to fly by name) the controller and you both know exactly how you are going to approach the airport. The end of the STAR route will normally leave your aircraft at a position where controllers can give you final instructions to set you up for a landing.

SIDs and STARs are quite similar to highways; they have speed limits and altitude restrictions at certain waypoints to make sure the air traffic is flying safely and on the same trajectory. The AFMC (Advanced Flight Management Computer) will automatically try to respect these restrictions.

In other words, you can see SIDs and STARs like road junctions in the sky that lead to other waypoints and airways from or to your desired airport. One airport has many SIDs and STARs.

Typically, SIDs and STARs are provided by the ATC (Air Traffic Controller). Since we're doing a tutorial, I will just give you the SID and STAR to plug in the AFMC.

75

D-ATIS 134.8 LINDBERGH TOWER

PARKING

18.3 338.225 GND CON 123.9 CLNC DEL 125.9 CPDLC **IRPORT DIAGRAM**

D

32°44.0′N-

SAN DIEGO INTL SAN DIEGO, CAI 32°43.5'N-

117º10.5'W

(SAN)

PLANNING THE **APPROACH - STAR**

These charts are for the STAR (Standard Terminal Arrival Route) from HOGGZ to Phoenix Sky Harbor International Airport (KPHX). We intend to:

- Come from HOGGZ waypoint 1.
- 2. Fly from HOGGZ towards the HYDRR ONE arrival route via HOGGZ -> JUDTH -> RKDAM -> HYDRR.
- 3. Follow the STAR (HYDRR -> GEELA -> PUNNT -> TEICH -> TESLE -> FALGO -> CADOR -> FOWLE)
- 4. Follow the approach towards the runway, guided by the KPHX airport's ILS (Instrument Landing System) via FOWLE -> ZINGA.
- 5. Land at Phoenix (KPHX) on runway 07L (orientation: 078 Left)

APP CRS

Rwy ldg 10300

1116

TDŻE

PHOENIX, ARIZONA

111.5

AL-322 (FAA)

4512

. 4160

4

4354

VGSI and ILS glidepath not coincident (VGSI Angle 3.00/TCH 73).

ZINGA

I-PHX (6.4)

1326/24

1460/24 344 (400-1/2)

1740-1 605 (700-1)

ILS or LOC/DME RWY 7L

5800

PURCH

I-PHX 3.4)

1620

210 (200-1/2)

17229

1740-13/4

605 (700-13/2)

CERLA

ALTERNATE MISSED

APCH FIX

2

R-180

4000

GS 3.00° TCH 57

CATEGORY

S-LOC 7L

CIRCLING

S-ILS 7L

FOWLE

-PHX 11

PLANNING THE FLIGHT - SUMMARY

So there it is! This is more or less all the information you need to plan your flight!

MCDU/AFMC IN A NUTSHELL

Most of the aircraft setup and flight planning will be done with the help of the MCDU, which encompasses various systems such as the AFMC system.

MCDU: Multifunction Control Display Unit

MAIN MENU page:

- AFMC -> Advanced Flight Management Computer
 - Fundamental component of a modern airliner's avionics. The AFMC is a component of the FMS (Flight Management System), which is a specialized computer system that automates a wide variety of in-flight tasks, reducing the workload on the flight crew to the point that modern civilian aircraft no longer carry flight engineers or navigators. A primary function is in-flight management of the flight plan. All FMS contain a navigation database. The navigation database contains the elements from which the flight plan is constructed. The FMS sends the flight plan for display to the Electronic Flight Instrument System (EFIS), or Navigation Display (ND)
- ACARS -> Aircraft Communication Addressing and Reporting System
 - Digital datalink system for transmission of short messages between aircraft and ground stations via airband radio or satellite. Such messages can be METAR weather reports.

Primary radar: Can only show approx position. No radar coverage 240km from land

MCDU/AFMC IN A NUTSHELL

AFMC -> Advanced Flight Management Computer

- INIT REF: data initialization or for reference data
- **DIR INTC**: direct intercept, modifies flight plan to track an interception course
- RTE: input or change origins, destination or route
- LEGS: view or change lateral and vertical data
- **CLB**: view or change climb data and cruise altitude
- CRZ: view or change cruise data
- DES: view or change descent data
- FIX: create reference points (fix) on map display
- DEP ARR: input or change departure and arrival procedures
- HOLD: create and show holding pattern data
- **PROG**: shows progression of dynamic flight and navigation data, including waypoint estimated time of arrival, fuel remaining, etc.
- MENU: view the main menu page (see previous page)
- **PREV PAGE / NEXT PAGE** : Cycles through previous and next page of selected FMC page
- **EXEC**: Makes data modifications active

Sounds complicated? Don't worry, it's much simpler than it looks. We'll see how it works in the tutorial section.

SET COLD & DARK STATE

In Prepar3d or FSX, you will generally spawn with your engines running. A "cold & dark" start-up means that your aircraft is in an unpowered state with engines and every other system off. Before firing up Prepar3d, we will set the desired options right at the start using the Leonardo Load Manager Control Panel. Here is the procedure to spawn in Cold & Dark state:

1. Set cockpit in cold & dark state

MD-82

ART

F

PRE.

Š

Ζ

٩

Ľ

┝

HDI

L

m

4

Δ

- a) Press ALT key to show the Prepar3d toolbar
- b) Select « Add-ons » sub-menu, then « Maddog X »
- c) Click on « Cold and Dark »
- 2. Select desired measurement units (Imperial or International System)
 - a) Open Load Manager executable maddog_lm.exe
 - b) Click on the AIRLINE OPTIONS tab
 - c) Select « Lbs/InHg » since we operate in the United States
 - d) Click SAVE

Fly the Maddog X - Manager & Setup - Prepar3D v4 \bigcirc SELECTED VARIANT : MD-82 (\mathbf{S}) General Load Manager Fuel/Route Planner Technical Log Airline Options Setup AIRCRAFT I-DAVD 2d 2b -217A Engine type FD cross bar, GS on the right PFD / ND style Cone Tail style 2c Cockpit units Lbs/InHa Cockpit color Blue Gear warning inhibit above 1500 RA PFD wired to opposite NAV Show Armed Altitude as Flight Level Auto-arm altitude Fuel quantity display with green LEDs Always play aural when autopilot disconnects Show Rising Runway Show ground speed on PFD Autobrake system Single knob altimeter Boarding music Maddog Crew audio files set Filter NavData database at (icao) radius (nm) Minimum Runway Length (ft)

LOAD FUEL

We will dynamically set our fuel, cargo and passenger loads using the Leonardo Load Manager Control Panel.

- 3. Click on the FUEL/ROUTE PLANNER tab
- 4. Set the Departure Airport ICAO Code (KSAN San Diego)
- 5. Set Arrival Airport ICAO Code (KPHX Phoenix)
- 6. Set Alternate Airport ICAO Code (KTUS Tucson)
- 7. Add waypoints and airways of the flight plan we defined earlier
- 8. Distance to Destination, Trip Fuel and Alternate Fuel will be automatically generated.
- 9. Enter remaining fuel information
 - a) Set Contingency fuel to approx. 1500 lbs
 - b) Set Final Reserve fuel to approx. 1000 lbs
 - c) Set Taxi Fuel to 700 lbs
 - d) Set Block fuel (total fuel) to 16400, the value we approximated earlier. Extra fuel will be automatically calculated.
- 10. Click on SAVE, then click on "Transfer Fuel QTY to Load Page"

LOAD CARGO & PASSENGERS

We will dynamically set our fuel, cargo and passenger loads using the Majestic Control Panel.

- 11. Click on the LOAD MANAGER tab
- 12. Set passenger numbers for PAX A and B areas (we will use 62 in A and 40 in B).
- 13. Set cargo load (we will use 1000 lbs in the FORWARD cargo bay and 1500 lbs in the AFT cargo bay)
- 14. Shift the passenger and cargo positions by clicking the FWD/AFT arrows to make sure the following weight & CG limits are respected:
 - a) TOW CG (Takeoff Weight CG) is between the two certified limits
 - b) TOW CG (Takeoff Weight CG) is below the MTOW (Maximum Takeoff Weight) line
 - c) ZFW CG (Zero Fuel Weight CG) is between the two certified limits
 - d) ZFW CG (Zero Fuel Weight CG) is below the MZFW (Maximum Zero Fuel Weight) line
- 15. Verify that the CG indexes and symbols are purple. A red symbol means that you are not within certified weight or CG limits.
- 16. Write down the following calculated parameters:
 - CG Location = 13 % MAC (Mean Aerodynamic Chord)
 - ZFW (Zero Fuel Weight) = 108468 lbs
- 17. Click on the SAVE AND EXIT button to save parameters and close the Load Manager. We can now spawn the aircraft with the passenger, cargo and fuel loads properly set.

SPAWN

18. Spawn like you normally would at Gate 10 in KSAN (departure airport) in the MD-82

~

POWER UP AIRCRAFT

19. On Overhead panel, turn on battery power

- a) Set Battery switch to ON (DOWN)
- b) Lock battery switch by scrolling down mousewheel on switch safety guard
- 20. Set Parking Brake ON (UP)

MD-82

ART

L S

PRE.

PLAN &

FLIGH

m

ART

Δ

- 21. Contact Ground Crew Mechanics to set ground power ON
 - a) On Audio Select Panel, push in the VHF-1, VHF-2, VHF-3, HF-1, HF-2, INT, PA, VOR/ILS/DME and MARKER Audio Receive buttons.
 - b) Press the INT (Intercom) microphone button
 - c) Next to the circuit breaker panel on the overhead console, <u>right click</u> (*left clicking will not work*) on the MECH CALL button to contact ground crew
 - d) Click "CONNECT GROUND POWER UNIT" (GPU) to connect ground power
 - e) After a few seconds the EXT PWR AVAIL light should illuminate
 - f) Set the EXT PWR L BUS and EXT PWR R BUS switches ON (DOWN)

AHRS & POSITION ALIGNMENT

Note: the MD-82 we have does not come equipped with an IRS (Inertial Reference System) to gather positional data; instead our Mad Dog uses a GPS. This means that we will not need to go through the 5to-10 minutes long alignment that's usually required on Boeing or Airbus aircraft.

- The AHRS (Attitude & Heading Reference System (which drives the flight instruments) alignment ٠ starts immediately when the aircraft power is ON and takes less than a minute.
- The positional information of the navigation systems are provided by GPS, which does not require ٠ any alignment. You simply need to enter GPS coordinates in your AFMC (Advanced Flight Management Computer) and then the computer will know exactly where you are.
- 22. Wait for the AMFC to light up automatically
- 23. In the IDENT menu, click on the LSK (Line Select Key) next to POS INIT
- 24. Click on the LSK next to the GPS coordinates you have to copy them
- 25. Click on the LSK next to SET FMC POS to enter GPS coordinates in the AFMC and set your position reference.

AFMC SETUP – FLIGHT PLAN

- 26. Go on AFMC (Advanced Flight Management Computer) and set aircraft route
 - a) In POS INIT menu, select ROUTE menu
 - b) On the MCDU, type "KSAN" as the departure airport (San Diego) and click on LSK next to ORIGIN (departure airport)
 - c) Consult navigation chart of KSAN airport and find runway from which you will takeoff from (Runway 27).
 - d) Type "27" (for Runway 270) on MCDU keypad and click on LSK next to RUNWAY.
 - e) Type "KPHX" on the MCDU keypad and click on LSK next to "DEST" to set Phoenix Airport as your destination

26b

26b

26d

ART L S PRE 8 7 1 ٦ Т FLIGI m 2 4 Δ

MD-82

AFMC SETUP – FLIGHT PLAN (DEPARTURE)

27. Go on AFMC (Advanced Flight Management Computer) and set departure information (airport, SID and transition waypoint)

- a) Click on "DEP ARR" (Departure Arrival) button and click on "DEP - KSAN" to set San Diego as our Departure Point
- b) Select Runway 27

MD-82

R

4

5

Ŵ

۵

Š

1

٦

U

LL

4

- Click NEXT to cycle SIDs available until you find ZZOOO1 c)
- d) Select SID (Standard Instrument Departure) for ZZOO01 as determined when we generated our flight plan.
- e) Select Transition to IPL (Imperial) Waypoint as determined when we generated our flight plan.
- Departure data is now entered f)

8102 AAM 10 of 8102 BEA 10 , E-W2

AFMC SETUP – FLIGHT PLAN (WAYPOINTS & AIRWAYS)

- 28. Go on AFMC (Flight Management Computer) and set up your waypoints and airways
 - a) Select the ROUTE page by pressing the RTE button
 - b) Type "J18" on the MCDU keypad and click on the LSK next to the dashed line on the left column (AIRWAYS) to set your next Airway.
 - c) Type "HOGGZ" on the MCDU keypad and click on the LSK next to the squared line on the right column (WAYPOINTS) to set your next Waypoint to HOGGZ.
 - click on NEXT PAGE button to add additional airways and waypoints as shown in previous steps if need be.

KSAN SID IPL J18 HOGGZ STAR KPHX

MD-82 Ż 1 5 ш Δ Š 1 Т U ш. m Ż ٩

AFMC SETUP – FLIGHT PLAN (ARRIVAL)

- 29. Go on AFMC (Advanced Flight Management Computer) and set arrival information (airport, STAR and transition waypoint)
 - a) Click on "DEP ARR" (Departure Arrival) button and click on "KPHX – ARR" to set Phoenix as our Arrival Point. If you are in the DEPARTURES or ARRIVALS sub-menu, you can click on the LSK next to INDEX to go back to the main DEP ARR menu.
 - b) Select Runway ILS 07L (Instrument Landing System Runway 070 Left)
 - c) Click NEXT to cycle STARs (Standard Terminal Arrival Route) available until you find HYDDR1.07L
 - Select STAR (Standard Terminal and Arrival) for HYDDR1 as determined when we generated our flight plan.
 - e) Select Transition Waypoint to HOGGZ as determined when we generated our flight plan.
 - f) Arrival data is now entered

AFMC SETUP – FLIGHT PLAN (VERIFY FLIGHT PLAN)

- 30. Rotate the PFD (Primary Flight Display) Brightness Control Knob to turn on both the pilot and co-pilot PFD displays.
- 31. Rotate the ND (Navigation Display) Brightness Control Knob (Outer) to turn on both the pilot and co-pilot ND displays
- 32. Verify your waypoints and remove any discontinuity
 - a) Set the EFIS mode knob to PLN (Plan)
 - b) Set map scale to appropriate range
 - c) Press the LEGS button on the MCDU
 - d) Press the LSK next to STEP to cycle through waypoints and verify that they are all linked properly

AFMC SETUP – FLIGHT PLAN (ACTIVATE FLIGHT PLAN)

33. Activate the flight plan

PRE-START

8

PLAN

FLIGHT

M

PART

~

- a) When everything is verified, set EFIS mode knob to MAP
- b) Set map scale to appropriate scale
- c) Click on the RTE (Route) MCDU button
- d) Click on the LSK next to ACTIVATE
- e) Click on the EXEC button
- f) Your flight plan is now activated in the AFMC

AFMC SETUP – PERF INIT

- 34. Enter Fuel & Weight information in AFMC
 - a) Press the INIT REF button on the MCDU to display the PERF INIT page
 - b) Check the total fuel quantity on your fuel indicator (16400 lbs)
 - c) On the MCDU keypad, type "16.4/N", and then click the LSK next to FUEL/SCHEDULE (16400 lbs total fuel)
 - d) Press and hold the ZFW (Zero Fuel Weight) knob pushed in to display the zero fuel weight value in the GROSS WT indication (108450 lbs, which is close enough to the ZFW value estimated in the Load Manager which was 108468 lbs).
 - e) Release the ZFW knob (OUT) to display the aircraft Gross Weight
 - f) On the MCDU keypad, type "108.5", and then click the LSK next to ZFW (108450 lbs zero fuel weight)
 - g) On the MCDU keypad, type "2.0", and then click the LSK next to RESERVES (2000 lbs fuel reserve, we'll use a ballpark figure)
 - h) The Gross Weight will automatically be calculated based on the three values we entered previously.
 - i) On the MCDU keypad, type "45", and then click the LSK next to COST INDEX
 - j) On the MCDU keypad, type "330", and then the LSK next to CRZ ALT to set a cruise altitude to 33000 ft
 - k) On the MCDU keypad, type "18000", and then click the LSK next to TRANS ALT to set a transition altitude to 18000 ft (U.S. transition altitude is generally 18,000 ft, while in Europe it's usually 3000 ft)
 - I) We will assume no winds and no deviation from standard temperature (ISA) for this tutorial.

AFMC SETUP – TAKEOFF REF **V-SPEEDS**

- 35. Set up Takeoff Reference Data
 - a) Press the LSK next to TAKEOFF in the PERF INIT page
 - b) Press "LSHIFT+5" to make the TAKEOFF DATA 2D panel appear and click on ACT TOW field to set its value to the GROSS WT (Gross Weight) displayed on TAKEOFF REF page.
 - c) Set Flap Takeoff Setting by scrolling the mousewheel on FLAP wheel (we will set it to a Flaps 11 deg takeoff setting)
 - d) Set CG position to the value previously determined in the Load Manager (13 % of Mean Aerodynamic Chord) by scrolling the mousewheel on CG wheel

35b	2D PANEL COMM	MANDS		
	- View Manager	(SHIFT + 1)		
	- FMS CDU 1	(SHIFT + 2)		
	 Zoomed CM1 PFD 	(SHIFT + 3)		
	 Zoomed CM1 ND 	(SHIFT + 4)		
	 Speed Charts 	(SHIFT + 5)		
	 Ground/Crew Comm 	(SHIFT + 6)		
	 Flight Documents 	(SHIFT + 7)		

35c

35d

1	DC9/80 TAKEOFE DATA					FLAP	ASS. TEMP.		
	DC9/80 TAKEOFF DATA								
11-	ARPT	FLIGHT	DATE	Б	EGISTRATION		WET	DRY	
	KSAN	15		N	1940	V ₁	124	133 -	
	RWY	RWY COND	WIND		WIND COMP	· ·	121	100	
	27	DRY				V _R	140	140	
	OAT	QNH	A/P LEVEL		MAC TOW				
/	15	2989		_	13.0	V ₂	148	148 -	
/	AIR FOIL A/I ON	MTOW FLAP 149491			125000	FLAP RETR	164		
	NOTES				93	slat RETR 18		183 🗕	
						FINAL SEG CL.	202		
						CLEAN		228	

- 35. Set up Takeoff Reference Data
 - e) Wait for a few seconds for the TAKEOFF DATA sheet to update. Observe the resulting V1, VR and V2 speeds resulting of this flap setting and current aircraft weight: V1 is the Decision Speed (minimum airspeed in the takeoff, following a failure of the critical engine at VEF, at which the pilot can continue the takeoff with only the remaining engines), VR is the rotation speed (airspeed at which the pilot initiates rotation to obtain the scheduled takeoff performance), and V2 is Takeoff Safety Speed (minimum safe airspeed in the second segment of a climb following an engine failure at 35 ft AGL).
 - f) V1 Speed is 133 kts VR Speed is 140 kts

V2 Speed is 148 kts

- Type "133" in the MCDU keypad and click the LSK next to V1 g)
- Type "140" in the MCDU keypad and click the LSK next to VR h)
- Type "148" in the MCDU keypad and click the LSK next to V2 i)
- Press "LSHIFT+5" again to hide 2D TAKEOFF DATA panel
- Click on the airspeed indicator to set V-Speed bugs on the airspeed indicator k)

AUTOPILOT & TAKEOFF TRIM SETUP

- 36. Turn on both FD (Flight Director) switches UP POSITION
- 37. Set HEADING knob to runway QDM (Magnetic) heading 275 as per KSAN chart (black "H" knob).
- 38. Set maximum bank angle to 15 degrees (white knob).
- 39. As per KSAN SID Chart, set Initial Altitude (FL120, or 12,000 ft) on FGCP (Flight Guidance Control Panel) by rotating ALT knob on glareshield until Altitude is set to 12,000 ft. Pull the knob out after setting up the altitude (left click) to arm the autopilot altitude mode.
- 40. Set SPD/MACH knob to an airspeed of V_2 +10 kts. V2 being 148 kts, the speed setting will be 158 kts.
- 41. The green takeoff trim reference was already set based on CG and Flap setting. Use either the LONG TRIM lever or the Stabilizer Pitch Trim on your yoke to match the white trim indicator with the green takeoff trim reference indicator. The Takeoff Stabilizer Trim setting should be set to 0.7.

Match Stabilizer Trim Indicator (White) with Takeoff Trim Setting (Green)

39

TAKE OFF

LONG TRIM

ALTIMETER SETTING

- **42. OPTIONAL:** If you have a weather add-on such as Active Sky, you can get a direct weather report from the ACARS (Aircraft Communication Addressing and Reporting System) page of your AFMC to get the altimeter setting.
 - a) Click the MENU button on the MCDU
 - b) Press the LSK next to ACARS
 - c) Select AOC REQUESTS
 - d) Select WX REQUESTS
 - e) Select SEND
 - f) Wait a few seconds for the Weather Report to appear for both KSAN and KPHX
 - g) The altimeter setting for KSAN is 30.02 inches of Hg
 - h) The altimeter setting for KPHX is 29.92 inches of Hg

If no weather add-on is installed, you will not be able to receive a weather report. In that case, you will have to use the method explained in the next page.

ALTIMETER SETTING

42. If you have no weather add-on installed, you can consult the KSAN ATIS system via the radio to get the altimeter setting.

MD-82

ART

L S

PRE.

8

7

1 Ľ

┝

Т

FLIGI

m Ż

4

- a) Consult the KSAN chart and find the San Diego ATIS Frequency (134.800).
- b) Set VHF-1 STANDBY radio frequency ATIS frequency (134.800)
- c) Click on the Transfer button to set the ATIS frequency to the ACTIVE frequency.
- d) You should receive the ATIS automated report on the radio for Lindbergh Field. The reported altimeter setting is 30.02 inches of Hg.
- You can click on the Transfer button to set e) the ATIS frequency back to the STANDBY frequency once you have the information you need.
- 43. Set altimeter setting to 3002 (30.02 inches of mercury) by rotating the altimeter knob.
- 44. Left click and hold the ADI (Attitude Director Indicator) until it is fully uncaged and level.

810S AAM 10 of 810S 833 10 ,E-W2

Visibility: 5 in light rain. Sky condition: few clouds at 800 ceiling 1,100 broken. Lindbergh airport information X-ray, 1348 zulu. Wind 200 at 6 Temperature: 16. Dewpoint: 13. Altimeter 3002. ILS runwa

~ **MD-82** ART **PRE-ST** Š PLAN FLIGHT M PART

CABIN PRESSURE

- 43. Set CKPT TEMP selector to AUTO
- 44. Set CABIN TEMP selector to AUTO
- 45. Set AIR COND switches to OFF
- 46. Set Cabin Pressure Pressure switch to PRIMARY
- 47. Press the TRANSFER LOCKOUT button
- 48. Set Landing Altitude to the Phoenix Airport elevation (1135 ft)
- 49. Leave the Landing Barometric Pressure setting as is for now. We will consult the Phoenix ATIS to get a more accurate setting once we are on approach.
- 50. Set Radio Rack to FAN
- 51. Set Air Cond Auto-Shutoff AUTO
- 52. Set Ram Air As Required (OFF)

PHOENIX, ARIZONA				AL-322 (FAA))	17229				
	LOC/DME 1 111.5	PHX APP CRS Rwy ldg 10300 TDZE 1116 078° Apt Flav 1135						ILS OF LOC/DME RWY 7		
V For inoperative MALSR, increase S-LOC 7L C, D A visibility to RVR 5000.					LC, D	MALSR		MISSED APPROACH: left turn direct PXR VO	Climb to 5000 then RTAC and hold.	. (1 1111)
D-ATIS PHO 127.575 12		PHOENIX APP 128.65 35	CON 3.9	۳ 118.7 27 120.9 25	HOENIX 78.8 (Rw	TOWER y 8-26) y 7L-25R, 7R-3	25L)	GND CON 119.75 269.2 (N) 132.55 269.2 (S)	CLNC DEL 118,1 269,2	CPDLC

DOORS

- 53. Set Flight Deck Door Switch to DENY, then to AUTO to lock it. The AUTO UNLK caution should extinguish.
- 54. Set Auxiliary Hydraulic Pump switch ON (UP)
 - Note: the aft door is hydraulically powered

55. Close any door that is still open

- a) Right click on the ATTENDANT CALL button
- b) Select DOORS AND STAIRWAYS menu
- Opened doors will be displayed in red c)
- d) Click on red icons to close their respective doors
- e) When closed, all door icons should be in green

PRE-START Š PLAN FLIGHT M ART Δ

TCAS, WEATHER RADAR & BUILT-IN TESTS

- 56. Power up the TCAS (Traffic & Collision Avoidance System)
 - a) Set TCAS frequency to 1200 (or as specified by ATC)
 - b) Set TCAS Mode to TA/RA
 - c) Set TCAS range to 5 nm
- 57. Power up the Weather Radar by pressing the PWR button
- 58. Press and hold the TEST switches for primary displays. Horrible, horrible noises should be audible until you release the switch.
- 59. Set the Ground Proximity Warning switch to TEST, and verify that you hear « Glide Slope Pull Up Terrain! ». Set switch back to NORM.
- 60. Set the Windshear Protection System switch to TEST, and verify that you hear the « Head wind, shear! » warning. Set switch back to NORM.
- 61. Set the Stall Warning System Test switch to SYS1/SYS2, and verify that you hear the « Stall! » warning. Set switch back to NORM.
- 62. Set the Max Speed Warning System switch to TEST, and verify that you hear the « Overspeed! » warning. Set switch back to NORM.
- 63. Set the Ice FOD (Foreign Object Damage) Detection System switch to TEST, and verify that you see ICE FOD warnings. Set switch back to RESET.

56b

4

PART

APU (AUXILIARY POWER UNIT) START

- 1. Set Right Aft Fuel Pump Switch ON (DOWN)
- 2. Set Start Pump Switch ON (DOWN)
- 3. Set APU Master Switch to START, then to RUN. APU start sequence will begin automatically.
- 4. Monitor APU RPM and EGT during start sequence to make sure no overspeed or overheating occurs.
- Once APU start sequence is complete (RPM stabilized at 100 % and EGT near 420 deg C), set APU L GEN and APU R GEN switches to ON (DOWN)
- 6. Set EXT PWR L GEN and EXT PWR R GEN switches OFF (UP)
- 7. Set Galley Power switch ON (DOWN)

3b

4

PART

11c

APU (AUXILIARY POWER UNIT) START

- 8. Set both left and right Pneumatic Cross-Feed Valve Levers OPEN (UP)
- 9. Set APU Air switch ON (MIDDLE position)
- 10. Set Left and Right Air Conditioning Supply switches OFF This is to make sure maximum APU bleed air pressure is available for engine start since the engine has a pneumatic starter.
- 11. Set EXT PWR L BUS and EXT PWR R BUS switches to OFF (UP). Then, right click on the MECH CALL button to contact ground crew and select "DISCONNECT GROUND POWER UNIT" to disconnect ground power. The EXT PWR AVAIL light should extinguish.

- 12. Set LEFT AFT, LEFT FWD, RIGHT AFT and RIGHT FWD Fuel Pump switches ON (DOWN). Center pumps can be left to OFF since we don't have fuel loaded in those tanks.
- 13. Verify that you have at least 36 psi of air pressure available. Failed starts can occur if you leave the AIR COND switches ON for instance.
- 14. Set Ignition switch to either SYS A or SYS B.
- 15. Set throttle to IDLE (fully aft)
- 16. For winter conditions (if fuel temperature is lower than 0 deg C), set both Left and Right FUEL HEAT switches to ON. The switches will automatically reset to OFF. These switches control a bleed air shutoff valve and the valve will automatically close after 1 min.

The MD-82 has a real-life problem with water condensation in the fuel tanks. Water condensation contaminates jet fuel, which then freezes and blocks the fuel filters during engine start-up.

MD-82 PROCEDURE **START-UP** 4 PART

ENGINE START-UP

- 17. Flip right starter switch safety guard and hold the starter switch ON (DOWN)
- 18. Confirm that the R START VALVE OPEN caution on the warning panel
- 19. Wait for N2 to rise up to approx. 20 %
- 20. Set Right Fuel Lever ON (FWD)
- 21. At 40 % N2, right engine generator will kick in
- 22. Wait until right engine parameters stabilize to approx. 25 % N1 and 55 % N2.
- 23. Set right starter switch OFF and put back the safety guard.

PROCEDURE

START-UP

PART

4

MD-82

ENGINE START-UP

- 24. Flip left starter switch safety guard and hold the starter switch ON (DOWN)
- 25. Confirm that the L START VALVE OPEN caution on the warning panel
- 26. Wait for N2 to rise up to approx. 20 %
- 27. Set Left Fuel Lever ON (FWD)
- 28. At 40 % N2, left engine generator will kick in
- 29. Wait until left engine parameters stabilize to approx. 25 % N1 and 55 % N2.
- 30. Set left starter switch OFF and put back the safety guard.

Fan, low-pressure compressor and low-pressure turbine are driven by the same shaft. This is N1 speed in percentage of maximum RPM.

~
- 31. Set Start Pump Switch OFF (UP)
- 32. Set Ignition switch OFF
- 33. Set APU L BUS and APU R BUS switches OFF (UP)
- 34. Set APU Air switch OFF (UP)
- 35. Set APU Master switch OFF (UP) APU will shut down after a cooldown of 60 sec.

ENG

42

50

89

IS

BO PRESS

- 36. Set Left Air Conditioning Supply switch AUTO (wait a few seconds for air pressure to build up)
- 37. Set Right Air Conditioning Supply switch AUTO
- 38. Set Windshield Anti-Fog & Anti-Ice switches ON
- 39. Set Heater Selector to PITOT CAPT
- 40. Set Left and Right Engine Anti-Ice switches As Required (OFF since outside temperature is greater than 6 deg C)
- 41. Set Air Foil L SYS and Air Foil R SYS Anti-Ice switches As Required (OFF since outside temperature is greater than 6 deg C)

42. Verify that AUX & Transfer Hydraulic Pump switch is set to ON 43. Set both engine-driven Hydraulic Pump switches – HI 44. Verify that hydraulic pressure is approx. 3000 psi

CEDURE PRO START ◀

45. Set Yaw Damper switch – ON 46. Set Anti-Skid switch – ARM 47. Set Mach Trim Compensator switch – NORM 48. Set Logo Light switch – ON 49. Set Emergency Lights Switch – ARM 50. Set NO SMOKING switch – ON 51. Set SEAT BELTS switch – ON 52. Set Nose Lights to BRT and Wing Landing Lights to EXT ON 53. Set Left & Right Ground Flood Light switches - ON 54. Set Anti-Collision Lights switch – ON 55. Set POS/STROBE light switch – BOTH 56. Set ART (Automatic Reserve Thrust) switch -OFF if using FLEX takeoff power /AUTO if using full takeoff power. 57. Press the TO FLX thrust rating mode to arm it 58. Set assumed temperature to 43 degrees (ballpark figure for reduced thrust for noise abatement)

58

ART

OFF

57

56

Note: **FLEX** is the standard takeoff thrust setting used on the MD-82. FLEX means that the aircraft uses reduced thrust on takeoff in order to reduce noise, prevent engine wear and prolong engine life. "Flexible temperature" means that the engine controller will force the engine to behave as if outside air temperature was higher than it really is, causing the engines to generate less thrust since higher air temperatures diminish an aero-engine's thrust generating capabilities. FLEX is also known in other companies as "Assumed Temperature Derate", "Assumed Temperature Thrust Reduction" or "Reduced Takeoff Thrust" or "Factored Takeoff Thrust".

1-1

m

- 59. Perform AUTOLAND system test (if you intend to use the Autoland system on landing), make sure to perform the Pre-flight Autoland Test.
 - a) Make sure that both FD (Flight Director) switches are ON (UP)
 - b) Set both VHF NAV knobs to valid ILS or VOR frequencies: we will take the PHX localizer frequency 111.5 and set on both VHF NAV knobs.
 - c) Press the AUTO LAND button to start the pre-flight test
 - d) FMA will display AUTO LND-PRE-FLT-TEST for the duration of the test
 - e) NO AUTOLAND indication will flash for the duration of the test
 - f) After approximately 50 seconds, flight mode annunciator goes blank or reverts to previous display and NO AUTOLAND legend light goes out indicating a valid test.

This is important to do this test if you intend to use the Autoland since the mode will not be immediately active if you press the AUTO LAND button and forgot to make that test. In fact, you may not be able to activate that mode at all.

60. Set flaps lever to 11-15 T.O. EXT detent

- 61. We intend to takeoff with flaps at 11 degrees. Set Flap/Slat wheel to a Flap T.O. SEL indication of 11 deg.
- 62. Verify that flaps are at 11 deg and that the T/O indication is illuminated.
- 63. Verify that no error messages are indicated on the overheat EOAP (Electronic Overheat Annunciator Panel)

-

MD-82

PUSHBACK

- 1. Verify that Anti-Skid switch is ARMED
- 2. Make sure parking brake is released (DOWN)
- 3. Right-click on the MECH CALL button to contact ground crew personnel
- 4. Select PUSHBACK menu
- 5. Set desired pushback orientation (distance and angle)
- 6. Click the green checkmark to start pushback.
- 7. Alternatively, you can simply use "LSHIFT+P" to start and stop pushback procedure since we are in a very tight spot.

YAW

Ø PART 5 - TAXI MD-82 >

PUSHBACK

TAXI

The MD-82 is steered on the ground by using a Nose Gear Steering Wheel (Tiller).

However, in FSX or Prepar3d you cannot map a joystick axis to your nosegear steering wheel: it's a limitation of the sim itself. In order to steer the aircraft, Leonardo mapped the tiller axis directly on the rudder axis. If you move your rudder pedals while on the ground, the aircraft will have its full steering range as if you were using the tiller.

Nose Gear Steering Wheel Used to steer aircraft on the ground

PART 5 - TAXI

MD-82

TAXI

- Our Flight Number for today will be AAL119 and we spawned at gate 10.
- After we performed pushback from gate 10, we would typically contact the tower for guidance by saying « AAL119, requesting taxi. »
- The tower would then grant you taxi clearance by saying « AAL119, taxi to holding position B1 Runway 27 via taxiway Bravo (B).
- This means that we will follow the B line, then turn left to the holding point B1... and then hold there until we get our clearance for takeoff.
- Make sure parking brake is released (DOWN)
- Throttle up to an EPR (Engine Pressure Ratio) of 1.2 to initiate taxi. Once you are moving, you can throttle back to IDLE thrust; it should be enough for taxi.
- Maintain taxi speed below 30 kts and reduce to 10 kts for sharp turns

SW-3, 01 FEB 2018 to 01 MAR 2018

TAXI

- 75 ft (23m)

- -**MD-82**
- Make sure that you make sharp turns by oversteering (nose gear follows outside the taxiway line radius). Compared to a Boeing 737, you will have to make larger turns since the main landing gears are much further aft in the MD-82.

75 ft (23m)

Approximate path of outside edge of

Runway-to-taxiway centerline of turn

150 ft (45m)

wing gear tires

- Approximate 16 ft (5m) (both sides) — R = 100 ft (30m)

- Approximate path of nose gear

Nose gear tracking beyond

intersecting taxiway centerline

(judgemental oversteering)

Notes:

airport

7 ft (2m)

Approximate path of outside edge of wing gear tires Modified fillet

R = 100 ft (30m)

Approximate path of nose gear

Nose gear tracking

centerline to centerline

 Symmetrical thrust · Mid CG

· Body gear steering inoperative No differential braking

· Before determining the size of intersection fillets, consult using airlines or airport authority regarding operating procedures

and aircraft types expected to serve the

150 ft (45m)

Boeing 737-800

McDonnell Douglas MD-82

TAXI ſ PART

Academic License PART 5 – TAXI MD-82 > 00 6 0 0 0 (1) 17 0 . 0 E 3 315 10 RBI Check signs to follow the taxi route towards the holding point (B1) WING LDG LTS NOSE LTS 11340 EXT OFF EXT ON B(O) VHF 118 NAV 0 0 STICK

TAKEOFF

- 1. Line up on the runway
- 2. Arm Spoilers: Set Speed Brake Lever Armed (UP)
- 3. Set Auto-Brake Switch T.O. (Takeoff)
- 4. Set Auto-Brake Arming Switch ARM
- 5. Release parking brake and hold wheel brakes
- 6. Throttle up quickly to Maximum power then back to IDLE and confirm that you have no aural (audio) warning. This means that you are now in proper takeoff configuration.

TAKEOFF

- 7. Verify that the ALT autopilot mode is armed (you should see the target altitude in orange on the FMA (Flight Mode Annunciator) panel. If ALT mode is not armed, left click on the ALT knob to pull it and arm it.
- 8. Press the TOGA button on the throttle to arm autothrottle system.
- 9. Hold brakes and throttle up to an EPR of at least 1.4
- 10. Once engines are stabilized, set the AUTOTHROTTLE switch to ON to activate automatic thrust. Electrical servo motor will be powered and will automatically move the throttle in the required takeoff thrust position (above an EPR of 1.4).
- 11. First Officer should be saying « Takeoff Thrust Set »
- 12. Release brakes and accelerate

CRUISE ø CLIMB TAKEOFF, 9 ART

Δ

TAKEOFF

- 13. As you speed up to 60 kts, the FMA will display « CLMP » (Clamped), which means the electrical servo motor of the autothrottle system is unpowered and will not move the throttle anymore, allowing you to move it if need be.
 - In other words, this means that the throttles can only be moved by YOU ٠ and will be not be actuated by the autothrottle. If the autothrust system has set the throttle position an EPR of 1.4 by itself, the throttle should stay there, but you you can still move the throttle in case of a rejected takeoff or if you exceed decision speed (V1) and are forced to throttle to max power in order to not crash at the end of the runway. The autothrottles will remain in CLMP until EPR / LIM is selected on the flight guidance panel or GA, MCT, CL, or CR are selected to the TRI (Thrust Rating Indicator).

14. Once you reach V1 (Decision Speed, 133 kts), start a gentle rotation. 15. Once you hear the First Officer say « Positive Rate », retract landing gear

58

22

185

ø CLIMB AKEOFF, 6 ART

MD-82 CRUISE ø CLIMB AKEOFF, 0 PART

CLIMB

- 1. Always make sure that the Selected Heading Line is lined up with pink line on the Navigation Display by rotating the HDG knob.
- 2. Set Engine-Driven Hydraulic Pump switches LOW
- 3. Set Transfer Pump and Aux Hydraulic Pump switches -OFF
- 4. When reaching 10,000 ft:
 - a) Set Wing Landing Lights RET (Retracted)
 - b) Set Nose Lights OFF
 - c) Set Ground Flood Lights Switches OFF
 - d) Set Wing/Nacelle Lights Switch OFF
 - e) Seat Belts Light Switch AUTO
- 5. Set Autobrake switch OFF

4e

CLIMB

- 6. Once you are approaching the JORRJ waypoint, you should have levelled off to 12000 ft by now. Set Autopilot Altitude target to 33000 ft (cruising altitude) and left-click switch to pull it and arm the ALT mode. When ALT mode is armed, you should see "330" in orange on the FMA.
- 7. You can, if you want, control your vertical speed in multiple ways:
 - a) You can set the pitch wheel and set the VERT SPD mode. 2000 ft/min is a good value.
 - b) Alternatively, you can let the Flight Management Computer control the climb rate for you by setting the VNAV mode with the VNAV button.

090

AND

CLIMB

- 8. Press the PROG button on the AFMC to access the progress page. You can monitor your progress from there.
- 9. When you reach your cruising ceiling (33,000 ft), the autopilot will automatically set itself in the Altitude Hold mode. The Top of Climb is indicated on the ND (Navigation Display) by a T/C symbol.
- 10. Once you pass transition altitude (3000 ft in Europe, 18000 ft in the US), adjust altimeter setting to standard barometric pressure (29.92 in Hg). Do it SLOWLY or your autopilot will start freaking out since you are changing his pressure reference. Using STANDARD pressure is done in order to use flight levels as a reference. This means you will be using a standard barometric pressure of 29.92 in Hg, which is also used by other aircraft in the airspace instead of a local one given by an Air Traffic Controller. If pilots don't use a "standard" barometric pressure, different aircraft may collide in flight since they don't use the same pressure to define their current altitude. This is why higher altitudes are defined as "flight levels" (i.e. FL330 would be 33000 ft).

CRUISE

- 1. When reaching the top of climb, the autopilot will start levelling off (yellow light will illuminate).
- Once levelled off to 33000 ft, the vertical autopilot mode will switch to VNAV LVL. 2.
- Select Cruise Thrust Power Rating (CR) 3.
- The autothrottle mode will switch from FMS EPR (autothrottle wants to maintain a 4. specific Engine Pressure Ratio) to FMS SPD (autothrottle wants to maintain a specific airspeed).

Introduction to Autopilot

Many newcomers in the flight simulation world have this idea that the autopilot is the answer to EVERYTHING. And I mean: e-v-e-r-y-t-h-i-n-g. Spoiler alert: it's not. The autopilot is a tool to help you fly to reduce your workload, not a tool to replace the pilot. The autopilot should be seen as a system that can make your life easier.

Now, why am I saying this? Because *some* people's knowledge of the autopilot system is summed up in "hit NAV and VNAV, then go watch an episode of Mayday while the aircraft does all the work". However, there are times where the autopilot can disconnect by itself (i.e. during major turbulence, or when the autopilot is trying to follow a flight profile (SID or STAR) that exceeds safety limitations like bank or pitch angles). The autopilot isn't smart: it will put you in dangerous situations if you ask him to. It will "blindly" follow whatever is set in the FMC. If there are conflicts or errors in the FMC's flight plan, the AP will gladly follow them even if they don't make sense. This is why you need to constantly be able to fly the aircraft manually if need be. The autopilot should be seen as a system that can make your life easier. This is why you need to be familiar with its capabilities and be able to read what the FMA (flight mode annunciator) is telling you.

FGS: Flight Guidance System

The FGS provides several major functions: the flight director (FD) provides lateral and vertical guidance to fly the aircraft. Two Digital Flight Guidance Computers (DFGC 1 and 2) and Performance Management System (PMS) provide data input for the FGS functions.

DFGC 1 and 2 receive inputs from the digital Central Air Data Computers (CADC), VHF navigation systems, compass systems, vertical gyros, radio altimeters, dual three-axis accelerometer, dual lateral accelerometer, performance management computer, and sensors of other airplane systems and functions.

A <u>Flight Guidance Control Panel (FGCP)</u> is provided for selection of desired FGS modes of operations by the Captain and First Officer. DFGC 1 or 2, as selected, provides data inputs for the following integrated FGS functions:

• Autopilot (AP)

UTOPILOT

ART

MD-82

• Stability augmentation (Mach Trim Compensation / Yaw Damper)

113.40

- Flight Director (FD)
- Speed Control (SC)
- Autothrottle System (ATS)
- Thrust Rating Computer (TRC)
- Automatic Reserve Thrust (ART)
- Altitude alert

Button	Description	Button	Dese	cription		
IAS MACH	Vertical autopilot changes aircraft attitude to hold indicated airspeed	SPD	Autoth (kts).	rottle system will adjust thrust to maintain desired indicated airspeed		
VERT SPD	Vertical autopilot changes aircraft attitude to hold vertical speed	MACH SEL	Autoth airspee	rottle system will adjust thrust to maintain desired Mach number ed.		
VNAV	Vertical autopilot changes aircraft attitude to follow vertical navigation path determined by the FMS	EPR LIM	Autothrottle system will adjust thrust to maintain desired Engine Pressur (EPR), which is used as a thrust reference unit.			
ALT HOLD	Vertical autopilot changes aircraft attitude to fly to target altitude	FMS OVRD	Autothrottle system will override the Flight Management System and thrust to maintain desired SPD/MACH when VNAV FMS mode is engaged			
HDG	Lateral autopilot tracks selected heading		-			
NAV	Lateral autopilot tracks navigation flight plan	Knobs		Description		
	determined by the FMS	COURSE		Sets ILS course		
VOR LOC	Lateral autopilot arms DFGS to capture and track a selected VOR or LOC course.	HDG		Sets autopilot heading for HDG mode (black knob) and bank angle (white knob)		
ILS	Lateral and vertical autopilots track localizer and glide slope targets for approach	VHF NAV		Selects which navigation frequency to track		
AUTOLAND	Lateral and vertical autopilots arm FGS to establish	ALT AUTOPILOT PITCH		Sets target altitude		
	AUTO LAND mode when both localizer and glideslope are being tracked.			Sets autopilot pitch attitude (which can be used by other flight guidal modes to specify what climb or descent rate you want to use)		
AP	Engages/Disengages Autopilot	(NOSE DN/ NO	SE UP)			
AUTOTHROTTLE	Engages/Disengages Autothrottle	15		315		

340

CRS

113.90

VHF

0000

132

NAV

594

VERTICAL MODE

VERTICAL & LATERAL MODE

AUTO-THROTTLE MODE

Automatic Thrust & ART

The <u>ATS</u> (Automatic Thrust System), also known as the "Autothrottle" system, is a system that will automatically move the throttle for you in order to set your desired thrust rating and autothrottle mode. Autothrottle modes determine whether engine power is set to maintain a desired speed in reference to airspeed (SPD), Mach number (MACH) or the Engine Pressure Ratio (EPR). If an EPR mode is selected, thrust rating selectors will determine what this EPR limit is set to:

Autothrottle Modes

- T.O. = Takeoff
- MCT = Max Continuous Thrust
- CL = Climb
- CR = Cruise

UTOPILOT

1

ART

Δ

MD-82

- GA = Go Around
- TO FLEX = Flexible Temperature Takeoff

The <u>ART</u> (Automatic Reserve Thrust) is a system that is only active when you lose an engine during flight, takeoff or landing. The ART is a fancy way of saying that the remaining engine will automatically increase power in order to maximize thrust and (hopefully) prevent you from crashing.

SW

Automatic Thrust - What is CLMP (Clamped) Mode?

UTOPILOT

1

ART

MD-82

People often wonder what the "CLMP" (or CLAMPED) autothrust mode means when you see it on the Flight Mode Annunciator. Typically, CLMP mode is engaged during the takeoff and descent phases.

What is CLAMPED? Simply put, the throttles are electrically actuated when autothrust is engaged. If you try to move them by yourself, you will not be able to since electrical servos have control of the levers. CLAMP mode de-activates the electrical servos ("clamping" them in the unlocked position), unlocking the throttles and allowing you to move them during takeoff and descent.

Now... why would anyone want the autothrust to be deactivated? Well, mainly for safety reasons.

During Takeoff, the autothrottle will engage CLMP mode when you reach 60 knots. What if you have an engine failure during takeoff and need to abort? What do you do? If you are below the decision speed, you can throttle down, slam the brakes and abort takeoff roll. However, you are above the decision speed, you HAVE to takeoff since you will not have enough runway remaining to brake without crashing. The decision is yours, and that's how CLAMP mode was designed to be: to give you the choice to either throttle up to maximum power or to throttle down and brake. If the autothrottle did not have that CLAMP mode, the electrical servos would simply leave the throttles locked in their current "commanded" position without allowing you to move them.

A similar philosophy is used for descent mode if you go in the DESCENT page of the AFMC and activate the DES NOW descent mode, or if you activate the IAS (speed) autothrottle mode, which is basically a deviation of the VNAV profile programmed by the FMS. These modes are rarely used since they do not facilitate a "smooth" transition from cruise altitude to descent.

FMA (Flight Mode Annunciator)

MD-82

The FMA displays the status of the autothrottle mode, armed autopilot mode, autopilot roll mode (lateral), autopilot pitch mode (vertical) and autopilot status.

Orange messages indicated that the autopilot mode is ARMED but not ENGAGED.

FMA (Flight Mode Annunciator)

1: Autothro	ttle Mode	2: Armed Mode			
ALFA SPD : Thrust levers controlled to maintain a safe margin above stall speed.	EPR 49 : Thrust levers controlled to maintain FLEX takeoff thrust rating with an assumed temperature of 49 deg C.	ALT : Altitude preselect armed for automatic capture of selected altitude	VOR : VOR mode armed for automatic capture of VOR course.		
ATS OFF: VNAV mode selected, autothrottle OFF.	FLAP/SLAT LIM: Thrust controlled to prevent exceeding flap/slat limit airspeed	AUT G/A : FGS armed for full automatic go- around capability	VOR ALT: VOR mode armed for automatic capture of selected ILS for automatic landing		
AUTO LND: Autoland preflight ground tests in progress.	FMS EPR/IDL/SPD : VNAV selected, thrust levers move to maintain PMS-calculated (Performance Management System) EPR/IDLE/AIRSPEED.	ILS ALT: ILS mode armed & altitude preselect armed for automatic capture of selected altitude	FD G/A : FGS armed for flight director go- around capability.		
CLMP : Clamp Mode: power is removed from ATS (Automatic Thrust System) servo, meaning that thrust levers remain stationary and can be moved by pilot.	PERF CLB/CRZ/DES : Performance mode engaged, thrust levers move to maintain PMS-calculated EPR/CRUISE SPEED/DESCENT EPR & SPEED.	LND : AUTOLAND mode armed for automatic capture of selected ILS for automatic landing	20 G/A : FGS armed for 20-foot automatic go- around capability.		
CLMP FMS : VNAV selected, power is removed from ATS servo, meaning thrust levers remain stationary and can be moved by pilot.	MACH 760: Thrust levers controlled to maintain Mach 0.760.	LND ALT: AUTOLAND mode armed & altitude preselect armed for automatic capture of selected altitude	AUT W/S : FGS armed for full automatic wind shear guidance		
EPR CL/CR/GA/MCT/TO : Thrust levers controlled to maintain climb, cruise, go around, maximum continuous thrust, or takeoff thrust limit.	MMO LIM : ATS automatically limited to not exceed maximum operating Mach number. (MMO)	LOC ALT: Localizer mode armed & altitude preselect armed for automatic capture of selected altitude	FD W/S : FGS armed for flight director wind shear guidance		
LOW LIM : ATS command would require a thrust lever setting lower than the minimum authority limit.	OVRD XXX : VNAV Mode engaged & FMS OVERRIDE is selected; throttles maintain speed on SPD/MACH readout.	MAN G/A: FGS armed for manual go- around capability			
DFGC PWR : Automatic Power Up Test in progress (2 min after landing)	OVRD LIM : VNAV Mode engaged & FMS OVERRIDE is selected & speed above Vmax or below Vmin; throttles main limit speed indicated by speed bug.	NAV: FMS NAV mode is armed			
SPD/MACH ATL : ATS throttle command exceeds EPR limit in SPD SEL or MACH SEL mode.	SPD 310: Throttle controlled to maintain 310 kts airspeed (SPD/MACH readout)	PRE : Auto Land pre-flight test in progress: appears approx. 50 seconds			
WIND SHR: WAGS (Windshear Alert & Guidance System) has detected a tail wind or head wind shear condition.	VMO LIM: Thrust is controlled to prevent exceeding maximum operating airspeed (VMO)	973 UP : Automatic Power Up Test in progress (2 minutes after landing)	136		

FMA (Flight Mode Annunciator)

3: Ro	ll Mode	4: Pitch Mode			
ALN : Align mode engaged (maintains runway alignment)	NAV HLD : Navigation mode engaged and FMS is in an internal heading hold until the present track intercept the lateral path	ALT CAP: Altitude preselect mode engaged and altitude capture has occurred.	NO FLR: ILS mode engaged and autopilot remains engaged at radio altitude of 100 ft.		
AUT LND: AUTOLAND mode engaged	ROL OUT : Main gear wheel spin-up has occurs: AP maintains runway localizer alignment with nosewheel steering	ALT HLD: DFGS is providing flight director commands to maintain barometric altitude at which altitude hold mode was engaged.	ROL OUT: Main gear wheel spin-up has occurred. Annunciation remains until autopilot is disengaged		
FLT: AUTOLAND mode pre-flight test in progress	TAK OFF: Takeoff mode engaged	AUL LDN: AUTOLAND mode engaged	TEST: AUTOLAND pre-flight test in progress		
GO RND: Go-around mode engaged	VOR CAP: Capture of selected VOR course has occurred	BOX 1/BOX 2: Automatic Power Up Test in progress (2 min after landing)	TAK OFF: Takeoff mode engaged. After liftoff, pitch command bar on PFD will display pitch commands to maintain V2 + 10 kts IAS		
HDG HLD: Heading hold engaged	VOR CRS: VOR station passage is occurring	FLAR: AUTOLAND mode engaged and flare mode initiated	VNAV CAP: FMS is coupled with DFGS and is in the VNAV capture mode.		
HDG SEL: Heading select mode	VOR TSK: Airplane is tracking selected VOR course	GO RND: Go-around mode engaged	VNAV CLB: VNAV mode maintains climb pitch attitude calculated by FMS		
LOC CAP: LOC, ILS or LAND mode engaged and capture of localizer course has occurred		G/S CAP: ILS or AUTOLAND mode engaged and airplane is capturing glideslope.	VNAV DES: VNAV mode maintains descent pitch attitude calculated by FMS		
LOC TRK: LOC, ILS or LAND mode engaged and airplane is tracking localizer course has occurred		G/S TRK: ILS or AUTOLAND mode engaged and airplane is tracking glideslope.	VNAV LVL: altitude level maintained by pitch attitude calculated by FMS		
NAV CAP : Navigation mode engaged and FMS is capturing the active lateral path		IAS: IAS (Indicated Airspeed) maintained by pitch attitude	PERF CLB: Climb pitch attitude set by PMS (Power Management System)		
NAV TRK : Navigation mode engaged and FMS is tracking the active lateral path		MACH: Mach Number maintained by pitch attitude	PERF CRZ: Cruise pitch attitude set by PMS (Power Management System)		
WING LVL: Turbulence mode engaged: roll command bar in PFD will command wings level to maintain heading		SPD LOW: Engaged pitch mode is commanding a pitch attitude that results in an airspeed below the ALFA reference speed.	PERF DES: Descent pitch attitude set by PMS (Power Management System)		
TST : Automatic Power-Up test in progress (2 min after landing)		WIND SHR: Wind shear pitch guidance	137		

AUTOPILOT

PART

So, you've finally made it all the way up to your cruising altitude? Congrats! Now, we have a bit of planning to do.

First, let's introduce you to the ILS (Instrument Landing System). This system exists to guide you during your approach.

- The Localizer is generally an array of antennas that will give you a lateral reference to the center of the runway.
- The Glide Slope station will help you determine the descent speed you need in order to not smack the runway in a smoldering ball of fire.

And an a state of the Localizer Array Station at Hannover **Glide Slope Station at Hannover** Great video explanation of ILS 90Hz https://www.youtube.com/watch?v=KVtEfDcNMO8 Localizer OM COMPASS LOCATOR OUTER MARKER (When Installed)

ANDING 8 Т Ū **PPROA** 4 00 ART Δ

PLANNING THE **APPROACH - STAR**

These charts are for the STAR (Standard Terminal Arrival Route) from HOGGZ to Phoenix Sky Harbor International Airport (KPHX). We intend to:

- Come from HOGGZ waypoint 1.
- 2. Fly from HOGGZ towards the HYDRR ONE arrival route via HOGGZ -> JUDTH -> RKDAM -> HYDRR.
- 3. Follow the STAR (HYDRR -> GEELA -> PUNNT -> TEICH -> TESLE -> FALGO -> CADOR -> FOWLE)
- 4. Follow the approach towards the runway, guided by the KPHX airport's ILS (Instrument Landing System) via FOWLE -> ZINGA.
- 5. Land at Phoenix (KPHX) on runway 07L (orientation: 078 Left)

APP CRS

078°

Rwy ldg 10300

1116

TDŻE

PHOENIX, ARIZONA

111.5

AL-322 (FAA)

4512

. 4160

4

4354

VGSI and ILS glidepath not coincident (VGSI Angle 3.00/TCH 73).

ZINGA

I-PHX (6.4)

1326/24

1460/24 344 (400-1/2)

1740-1 605 (700-1)

ILS or LOC/DME RWY 7L

5800

PURCH

I-PHX 3.4)

1620

210 (200-1/2)

17229

1740-13/4

605 (700-13/2)

CERLA -PHX 2.3)

ALTERNATE MISSED

APCH FIX

2

R-180

4000

GS 3.00° TCH 57

CATEGORY

S-LOC 7L

CIRCLING

S-ILS 7L

FOWLE

-PHX 11

Final Approach Course: 078

This is the heading you will take when approaching for final landing.

Minimums Decision Height: 200 ft

This is the minimum "decision height" (DH) during landing. If you go lower than 200 ft above ground level, you are committed to land no matter what happens. Above 200 ft, you can still miss your approach and go around. Take note of the Airport Elevation (1135) and the TDZE (Touchdown Zone Elevation) of 1116 ft.

ILS Frequency: 111.5 MHz

This is the ILS system frequency you will track to guide your aircraft for landing.

ATIS Frequency: 127.575

The ATIS (Automatic Terminal Information Service) will provide you valuable information including wind direction and speed, and the altimeter setting required for landing.

Missed Approach Standby

Frequency: 115.6 MHz

VOR PXR will be the beacon we will track in case we miss our approach and have to go around.

Missed Approach Procedure

In case we miss our approach, the procedure is to climb to 5000 ft then take a left turn, direct to the PXR VOR and hold.

Here is a great link to know how to read these charts properly: https://community.infinite-flight.com/t/how-to-read-an-approach-chart/8952

Cruise

- 1. We have already selected in our AFMC our Arrival runway as ILS7L and our arrival STAR "HYDRR1" and our Initial Approach Fix "FOWLE" at the beginning. Normally, we do this before we begin our approach. See the "AFMC SETUP – WAYPOINTS & AIRWAYS" section.
- 2. On FGCP (Flight Guidance Control Panel), set COURSES to Final Approach Course for runway 7L (078).
- 3. Set ILS frequency of 111.5 with the left VHF NAV knob
- Set Missed Approach VOR frequency of 115.6 with the right VHF NAV knob 4.
- 5. Set target altitude to 4000 ft (FOWLE waypoint altitude restriction) and left click to pull the knob to arm the ALT autopilot mode.

NRV VNR TRK LVL

SPT

-40

- 6. Set Decision Height (DH) to 200 ft
- 7. Press "LSHIFT+5" to make the TAKEOFF DATA 2D panel appear and click on DC9/80 TAKEOFF DATA field to switch to the LANDING DATA 2D panel.
- 8. Click on the airspeed indicator once to reset the V-speed bugs.
- 9. Left click on the airspeed indicator to set V-speed bugs to landing reference speeds for flaps 40 deg. If you want to set V-speed bugs to a landing speed for flaps 28 deg, right click instead.
- 10. Press "LSHIFT+5" to hide the LANDING DATA 2D panel.

					3 3		
unit 617 6	D	C9/80 TAI	KEOFF I	DATA	FLAP 11	AS:	S. TEMP.
120 120 120	ARPT KSAN RWY	FLIGHT -20 RWY COND	DATE	REGISTRATION N9405T WIND COMP	V ₁	_{wer} 124	_{дку}
250 240 (AS 140) S	27 0AT		273/9	3 MAC TOW	V _R	140	140
71,720 71,720,000 180 526	-20 AIR FOIL	775	FLAP	13.0	V ₂	148	148 🖛
00	AЛ ON	14949	1	125000	FLAP RETR		164 💻
	NOTES:				SLAT RETR		183 🗕
					FINAL SEG CL.		202
Shilling					CLEAN MAN.		228

		OPWS			2 2	
5			DC9/80		DIN	G DATA
9	11400 7 % 3 ⁸	6	DRIFTDOWN > 18000 ft. 234	V _{MAN}	CONF.	V _{TH}
	350 ····	120	FINAL SEGMENT CLIMB	228 -	UP RET	204
	250 240 Mas 220 m	140	SLAT RETRACTION 183	179 -	0 ext	161
	200 180	Se la companya de la comp	FLAP RETRACTION 164	155 -	15 EXT	151
		00.	GO-AROUND 149	145	28 EXT	141
	10 DATE:		LANDING	125	40 EXT	133
And the second second	SE tample	DME-2 21.4W	WEIGHT			
the second s						
	9	V _{APPROACH} (V _{FLAPS 40 or 28})			3 5	
2	9	V _{APPROACH} (V _{FLAPS 40 or 28}) v _{FLAPS 28} = 141 kts	DC9/80	LAN	DIN	G DATA
2	9 V	V _{APPROACH} (V _{FLAPS 40 or 28}) v _{FLAPS 28} = 141 kts	DC9/80 DRIFTDOWN > 18000 R 234		DIN CONF.	G DATA V _{TH}
2	9 1400.7.9.2 350	V _{APPROACH} (V _{FLAPS 40 or 28}) v _{FLAPS 28} = 141 kts	DC9/80 DRIFTDOWN > 18000 ft 234 FINAL SEGMENT CLIMB 202	LAN V _{MAN} 228 -	CONF. UP RET	G DATA V _{тн} 204
2	9 V V V V V V V V V V V V V	V _{APPROACH} (V _{FLAPS 40 or 28}) _{FLAPS 28} = 141 kts	DC9/80 DRIFTDOWN > 18000 fl 234 FINAL SEGMENT CLIMB 202 SLAT RETRACTION 183	LAN V _{MAN} 228 - 179 -	CONF. UP RET 0 EXT	G DATA V _{тн} 204 161
2	9 1400.7.9.2 350 250 240 250 240 250 240 250 240 250 250 240 250 240 250 240 250 250 240 250 260 260 260 260 260 260 260 26	V _{APPROACH} (V _{FLAPS 40 or 28}) _{FLAPS 28} = 141 kts	DC9/80 DRIFTDOWN > 18000 fl 234 FINAL SEGMENT CLIMB 202 SLAT RETRACTION 183 FLAP RETRACTION 164	LAN V _{MAN} 228 - 179 - 155 -	DINC CONF. UP RET 0 EXT 15 EXT	G DATA V _{TH} 204 161 151
2	9 1000 7 9 2 350 250 250 250 250 250 250 100 100 100 100 100 100 100 1	V _{APPROACH} (V _{FLAPS 40 or 28}) V _{FLAPS 28} = 141 kts	DC9/80 DRIFTDOWN > 18000 R 234 FINAL SEGMENT CLIMB 202 SLAT RETRACTION 183 FLAP RETRACTION 164 GO-AROUND 149	LAN V _{MAN} 228 - 179 - 155 - 145	CONF. UP RET 0 EXT 15 EXT 28 EXT	G DATA V _{тн} 204 161 151 141

- 11. Set AUX & Transfer Hydraulic Pump switches to ON
- 12. Set both engine-driven Hydraulic Pump switches HI
- 13. Set GPWS (Ground Proximity Warning System) TERRAIN switch ON
- 14. If you have a weather add-on installed like Active Sky, you can get a weather report through the ACARS as shown in the FLIGHT PLANNING ALTIMETER SETTING section.

If you have no weather add-on installed, you can consult the KPHX ATIS system via the radio to get the altimeter setting.

- a) Consult the KPHX chart and find the Phoenix Sky Harbor ATIS Frequency (127.575).
- b) Set VHF-3 STANDBY radio frequency ATIS frequency (127.575)
- c) Click on the Transfer button to set the ATIS frequency to the ACTIVE frequency.
- d) You should receive the ATIS automated report on the radio for Sky Harbor Airport. The reported altimeter setting is 29.90 inches of Hg.
- e) You can click on the Transfer button to set the ATIS frequency back to the STANDBY frequency once you have the information you need.

Set Cabin Pressure LANDING BARO setting to 29.88 inches of Hg, as stated by ATIS.
 Set TCAS (Traffic & Collision Avoidance System) antenna switch to scan BELOW aircraft for descent.

Sky Harbor airport information Golf, 1512 zulu. Wind 243 at 7. Visibility: greater than 20 miles. Sky condition: clear. Temperature: 26. Dewpoint: 4. Altimeter 2990. Visual runway 25R, ILS runway 25L and ILS runway 26 in use. La

1. You will automatically start descending when reaching the T/D point, activating the VNAV DES mode. If for some reason you remain in VNAV LVL (level) mode, press the VNAV button on the glareshield to activate the VNAV DES (descent) mode.

Alternatively, you can use another method to initiate descent. You can go In the DES page of the AFMC, click on the LSK next to DES NOW, and click the EXEC button. This will start a steep descent and the autothrottle will enter CLMP (Clamped) mode, meaning that you have to manually manage your descent speed by controlling the throttle levers. I do not recommend that method since it will not initiate a smooth transition to descent.

- 2. Set Thrust Rating to GA (Go-Around)
- 3. When reaching the transition level of 18000 ft, set barometric pressure to the altimeter setting specified by the ATIS (29.90 in Hg).

DNIDN ٢ 8 Т APPROAC 00 ART ۵.

DESCENT & APPROACH

- 4. Once you start descending, make sure to check if there are cloud layers that you are likely to go through and check if the RAT (Ram Air Temperature) is greater than -6 deg C. If the temperature is below -6 deg C, you need to engage the AIR FOIL Wing Anti-Ice switches and the ENG Anti-Ice switches to prevent icing from occurring. Take note that you need at least 20 psi of bleed air pressure to use AIR FOIL anti-ice, which will require you to throttle up above IDLE. Engaging AIR FOIL anti-ice with a low pressure will trigger the " ICE PROTECT TEMP LOW" (appears when air delivered to pneumatic crossfeed duct is below normal operating temperature due to low engine power or a malfunction in temperature control system).
- 5. When reaching FL100 (10000 ft), set Wing Landing lights to EXT ON and Nose Lights to BRT.

Air Pressure (x10 psi)

MD-82
SET UP APPROACH

- 6. Consult the LEGS page of the AFMC to consult the altitude and airspeed restrictions of the approach waypoints. We will maintain a descent speed of 210 kts until FALGO, then slow down to 170 kts or below at CADOR, then level off at 4000 ft at FOWLE and descend to 2600 ft to ZINGA.
- 7. Arm Speed Brake Lever (UP)

RE

LINFRU

DES

DC

TRK

10

- Press the VOR/LOC button to arm Localizer mode. 8.
- 9. When localizer is captured (about when you are lined up with FALGO), the FMA will display LOC CAP (Localizer Capture).
- 10. When localizer lateral deviation is small enough, the autopilot will track the localizer and the FMA will display LOC TRK (Localizer Tracking).

VOR

NAV

170

.056

EPR

-40

10

0

9

FOWLE

CAG

LL o ILS

ROSE EFIS Page

27.2

ANDING

MD-82

SET UP APPROACH

- 11. When localizer is tracked, press the ILS button to arm ILS (glide slope) mode.
- 12. When glide slope is captured the FMA will display G/S CAP (Glide Slope Capture).
- 13. When glide slope vertical deviation is small enough, the autopilot will track the glide slope and the FMA will display G/S TRK (Glide Slope Tracking).
- 14. When you reach FALGO and start approaching FOWLE (initial approach fix), your airspeed limit will be 170 kts, which means that we can start deploying our flaps since the maximum speed for flaps extension at 0 deg is 179 kts.

SET UP APPROACH

- 15. Deploy landing gear at an airspeed lower than 250 kts 16. Set SPD knob to 170 kts (FOWLE speed limit). Orange speed command bug will be set as well.
- 17. Once aircraft has slowed down to 170 kts, set flaps lever to 0 deg.
- 18. Set SPD knob to 155 kts. Orange speed command bug will be set as well.
- 19. Once aircraft has slowed down to 155 kts (flaps 15 configuration speed), set flaps lever to 15 deg.
- 20. Set SPD knob to 146 kts. Orange speed command bug will be set as well.
- 21. Once aircraft has slowed down to 146 kts ($V_{APPROACH}$ = V_{FLAPS 28} + 5 kts), set flaps lever to 28 deg. Alternatively, you can set flaps 40 for landing if you prefer. 22. Once flaps are deployed to LANDING configuration (either 28 or 40), Arm and Set Autobrake to MED.

FINAL APPROACH

- 1. To use the Autoland system, make sure that you have initially done the pre-flight test prior to takeoff.
- 2. NOTE: If the pre-flight test hasn't been performed beforehand on the ground, the NO AUTOLAND annunciation will flash and inhibit the Autoland system. You'll have to land using the ILS. Too bad!
- 3. If the pre-flight test has been done already, the LND (Autoland) mode will be armed on the Flight Mode Annunciator when you press the AUTO LAND button.
- 4. Once localizer (lateral component) and glide slope (vertical component) of approach path are both captured and tracked by autopilot, the autopilot will switch to AUT G/A mode (Autoland) on the Flight Mode Annunciator once flying below 1500 ft (radar altimeter altitude).

NOTE: If for some reason you decide to do a manual landing instead, a good procedure is to disconnect the Autopilot switch and the Autothrottle switch and follow the flight director to the runway by flying manually. You will then land the aircraft visually. Don't follow the flight directors to touchdown: they're not designed to provide accurate design past this past DH (decision height).

MD-82

LANDING

- 1. At your Decision Height (200 ft), you will hear the « Minimums » audio cue. Below this altitude, you are now commited to land.
- 2. At 100 ft, if autopilot remains engaged, NO FLR (No Flare) flashes in the pitch FMA.
- 3. At 50 ft, if autothrottle remains engaged, RETD (Retard Throttle) flashes in the Autothrust FMA.
- 4. Throttle back to IDLE.

151

LANDING

ø

 $\boldsymbol{\omega}$

LANDING

5. On touchdown, push the nose into the ground to improve adherence with the runway and maximize braking (the Autobrake system will already brake for you)

LANDING

- Press and hold "F2" ("Throttle decrease quickly" binding) to deploy thrust reversers until you slow down enough to vacate the runway safely.
- 7. Once landed safely, retract slats and flaps, stow thrust reversers and set throttle to IDLE to taxi towards parking spot.

ANDING

ر م

APPROACH

00

PART

~

MD-82

Thrust Reversers Disarmed & Stowed

Image: Contract of the state of the

Throttle at IDLE

Reverse Thrust Generated

